As a wind turbine generator, a permanent magnet synchronous generator (PMSG) is used in this post. Mechanical energy is acquired from the kinetic energy of the wind through a wind turbine, and the PMSG converts this energy to electrical energy. The PMSG output is converted to DC power through a thyristor rectifier. The output power of the wind turbine is equal to the DC converted power if the losses in the generator and rectifier are negligible.

Referencia: S. M. Muyeen “Wind Energy Conversion Systems – Technology and Trends” Springer. New York. DOI 10.1007/978-1-4471-2201-2

Como generador de turbina de viento, un generador sincrónico de imanes permanentes (PMSG) es usado en el presente post. La energía mecánica es adquirida de la energía cinética del viento a través de una turbina de viento, y el PMSG convierte ésta energía a energía eléctrica. La salida de PMSG es convertida a potencia DC a través de un rectificador de tiristores. La potencia de salida de la turbina de viento es igual a la potencia convertida DC si las pérdidas en el generador y rectificador son despreciables.

Referencia: S. M. Muyeen “Wind Energy Conversion Systems – Technology and Trends” Springer. New York. DOI 10.1007/978-1-4471-2201-2

Dear IEEE community.
I request the support of the IEEE Fellow members for my application to IEEE Fellow Member as Educator, having disseminated science and engineering topics through electronic media, radio programs, counseling for student chapters, social networks, for many years.
Those interested in knowing a little more about what I have done (which can be verified through social networks and my blogs), and who wish to support me with their letters of recommendation. please write to me. Thanks.

Estimados(as) les invito a participar en el módulo 3 del curso “INTRODUCCIÓN A LAS MICRORREDES ELÉCTRICAS INTELIGENTES: “ASPECTOS POLÍTICOS, REGULATORIOS, NORMATIVOS Y NUEVOS MERCADOS PARA LAS MICRORREDES”. Se transmitirá en vivo y en directo el miércoles 30 de setiembre de 10 h a 13 h (UTC -3). La inscripción es gratuita.

El módulo 3 consistirá en las siguientes temática: – Experiencia en Colombia, – Experiencias del Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas, IPSE, Colombia- Experiencia en México.El congreso es virtual.

El curso también se retransmitirá en tiempo real, en YouTube, a través del link

Pueden realizar la inscripción a todo el curso, encontrar el cronograma y temas que serán ofrecidos en cada uno de los módulos, hasta diciembre de 2020, en el siguiente link:

En este link también podrán encontrar los videos de las presentaciones ya realizadas en módulos anteriores, por si no los han podido ver en el momento de ser emitidos.

El horario del evento para Colombia, Ecuador, Perú, México = 08:00 a 11:00 h

Hago incidencia de que es libre y gratuito, se transmite por internet, saludos.

“A mathematical model of SmartValley for estimation of contribution of biomass to the electrical generation”
Jorge Mírez ; Segundo Horna ; Daniel Carranza
2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). Ixtapa, Mexico, Mexico
A mathematical model is presented for the estimation of the contribution of biomass to the generation of electricity for a valley as a geographical scope of application. Is considered that a valley has several species that are cultivated during the year and that have by-products of the harvest that we have considered as biomass that can be used for the production of electricity that would benefit the valley’s inhabiting community. We have called this integration between population and crops SmartValley, which leads to the use of monitoring, control, management and planning among the different agricultural-energy actors.

Gratefully for this news !!

Dr. Jorge Luis Mírez Tarrillo – PERU

The basis of a fuel or chemical production system is that the feedstock is converted to a useful primary energy product and either used as such, or further converted, upgraded or refined in subsequent processes to give a higher quality and higher value secondary product as shown in Figure.

When organic materials are heated in the absence of air, they degrade to a gas, a liquid, and a solid as summarised in Figure. It is possible to influence the proportions of the main products by controlling the main reaction parameters of temperature, rate of heating, and vapour residence time. For example fast or flash pyrolysis is used to maximise either the gas or liquid products, depending on temperature as summarised below:

  • Slow pyrolysis at low temperatures of around 400°C and long reaction times (which can range from 15 minutes to days in traditional beehive kilns) maximises charcoal yields at about 30% wt.
  • Flash pyrolysis at temperatures of typically 500°C; at very high heating rates and short vapour residence times of typically less than 1 second or 500 ms; maximises liquid yields at up to 85% wt (wet basis) or up to 70% dry basis.
  • Similar flash pyrolysis at relatively high temperatures of above 700°C; at very high heating rates and similarly short residence times maximises gas yields at up to 80% wt. with minimum liquid and char production.
  • “Conventional” pyrolysis at moderate temperatures of less than about 500°C and low heating rates (with vapour residence times of 0.5 to 5 minutes) gives approximately equal proportions of gas liquid and solid products


Source: A. Bridgwater. Thermal biomass conversion and utilization – Biomass information system. European Commission – Agro-Industrial Research Division. 1996

Dr. Jorge Luis Mírez Tarrillo – PERU

There are four thermochemical methods of converting biomass: pyrolysis, gasification, liquefaction and direct combustion. Each gives a different range of products and employs different equipment configurations operating in different modes. These are summarised below in figure

Source: A. Bridgwater. Thermal biomass conversion and utilization – Biomass information system. European Commission – Agro-Industrial Research Division. 1996

Dr. Jorge Luis Mírez Tarrillo – PERU

Our Solution: “Hablemos de Ciencia – Let’s Talk Science”

Tagline: Llevamos Ciencia y Tecnología de manera amical, sencilla y técnica usando radioemisoras de señal abierta en América Latina y el Caribe

Participando en el concurso TPRIZE CHALLENGE.
Ayúdanos compartiéndolo en redes sociales y comentándolo 

Burning harvested organic matter – biomass – provided most of mankind’s energy needs for millennia. Using such fuels remains the primary energy source for many people in developing and emerging economies, but such “traditional use” of biomass is often unsustainable, with inefficient combustion leading to harmful emissions with serious health implications.

Modern technologies can convert this organic matter to solid, liquid and gaseous forms that can more efficiently provide for energy needs and replace fossil fuels. A wide range of biomass feedstocks can be used as sources of bioenergy. These include: wet organic wastes, such as sewage sludge, animal wastes and organic liquid effluents, and the organic fraction of municipal solid waste (MSW); residues and co-products from agroindustries and the timber industry; crops grown for energy, including food crops such as corn, wheat, sugar and vegetable oils produced from palm, rapeseed and other raw materials; and nonfood crops such as perennial lignocellulosic plants (e.g. grasses such as miscanthus and trees such as short-rotation willow and eucalyptus) and oilbearing plants (such as jatropha and camelina).

Many processes are available to turn these feedstocks into a product that can be used for electricity, heat or transport. The figure illustrates a number of the main pathways available for these applications (IEA and FAO, 2017). The most common pathways to date have been: the production of heat and power from wood, agricultural residues and the biogenic fraction of wastes; maize and sugarcane to ethanol; and rapeseed, soybean and oil crops to biodiesel. Each of these bioenergy pathways consists of several steps, which include biomass production, collection or harvesting, processing to improve the physical characteristics of the fuel, pre-treatment to alter chemical properties, and finally conversion of the biomass to useful energy. The number of these steps may differ depending on the type, location and source of biomass, and the technology used to provide the relevant final energy use.

Source: International Energy Agency. “Technology Roadmap: Delivering Sustainable Bioenergy”

To provide an understanding of the current market landscape for bioenergy, an overview of market developments across the heat, electricity and transport sectors over the 2010-16 period is provided. This highlights key market trends since the production of the previous IEA technology roadmaps on bioenergy, and puts the longer-term scenarios in this roadmap into context.

Biomass and waste are already a significant global energy source, accounting for over 70% of all renewable energy production, and making a contribution to final energy consumption in 2015 that was roughly equivalent to that of coal. The largest end use of biomass and waste remains the traditional use of biomass, which is generally considered an unsustainable application of these resources. The focus of this publication is modern bioenergy solutions; the term bioenergy is generally used to refer to these and exclude the traditional use of biomass. Modern bioenergy consumption is largest in the heat sector, although bioenergy for electricity and transport biofuels is growing faster, mainly due to higher levels of policy support

Source: International Energy Agency. “Technology Roadmap: Delivering Sustainable Bioenergy”

Durante el Congreso BioBio Energía 2018 que se realizó en la Ciudad de Concepción, la Revista Energía me hizo una entrevista cuyas preguntas y respuestas se plasman en el link líneas abajo. Dicha entrevista fue del todo cordial, amena, técnica y entretenida; pues la temática y el entorno del evento permitían un clima adecuado de fluencia de opiniones e ideas. Les dejo con ésta lectura que espero sea de su interés.

Link de la entrevista:

Considerando que la densidad población de Perú es 20 personas/km2, España es 93 personas/km2 e Italia es 200 personas/km2. Se analiza la relación entre densidades poblaciones y la cantidad de casos confirmados de coronavirus cuya data recolectada se muestra en Tabla 1 y muestran los resultados en las Figuras 1, 2 y 3.

Ver análisis completo en:

I share what I have published in my other blog, with this I contribute one more grain of sand to understand the behavior of this global pandemic: coronavirus COV-19

Comparto lo que he publicado en mi otro blog, con esto aporto un granito de arena más para entender el comportamiento de ésta pandemia mundial: coronavirus COV-19.

Videoconferencia sobre Vehículos Eléctricos en la red y un resumen de tecnologías de generación distribuida en el marco de Energías Renovables. . Invitados a darle Me Gusta  a mi fanpage Transmisión en vivo y en directo. Compartir 

Página siguiente »