Neighborhood heroes – Jorge Mírez (MSc, Eng.)

Interview by Edelnor http://www.edelnor.com.pe in National University of Engineering – UNI http://www.uni.edu.pe Lima, Perú (August 2016)
It is a brief history from my childhood to Mars Desert Research Station (MDRS) and two projects tested during Crew 141 and Crew 142 (28 days of simulation in MDRS in april-may 2014): ergonomic backpack and stretcher/bycicle. Too about personal motivation for science and technology and part of my daily work.

Contact email: jmirez@uni.edu.pe
Fanpage http://www.facebook.com/jorgemirezperu  (please Like to my fanpage)

Link Youtube:  https://youtu.be/rWhQp_Pk1gM

photo_youtube_interview_jorge_mirez_by_edelnor_electrical_company_peru


J996_Manifestación de la energía geotérmica en el Perú

En Perú – mi país – la manifestaciones de energía geotérmica son debidos principalmente a la interacción entre la placa oceánica de Nazca que se desplaza hacia el interior y por debajo de la placa continental. Esto se llama movimiento convergente de las placas. Cerca a la costa hay una parte profunda que por coincidencias de la naturaleza se llama el uppelling peruano, generador de la gran riqueza marina y que espero se conserve para la alimentación de la población peruana (dado que tenemos una fuente excelente de alimentación, pero tenemos 14 % de niños con desnutrición) ya que se lee en noticias que eso lo venden a las empresas extranjeras y el Ministerio del Medio Ambiente está pintado. En la parte central del Océano Pacífico asciende magma del interior de la Tierra lo cual es un movimiento divergente de las placas oceánicas. Recordar que el manto tiene 1.5% de material fundido que es sobre el cual la corteza terrestre “flota” y basta temperaturas de 700 °C para que las rocas de la placa de Nazca que se desplazan hacia abajo y por debajo de la placa continental se fundan. Hay zonas propensas de terremotos por lo general ubicados en lo que corresponde al Cinturón de Fuego del Pacífico. En el Sur de Perú y Chile hay volcanes bastante activos y muchas manifestaciones en superficie (fumarolas, aguas termales, etc) de indicios de anomalías térmicas que implica una cercanía del magma a la superficie terrestre o la presencia de fallas o fisuras que permiten ello. Con importancia para quienes deseen realizar investigaciones en la determinación de potenciales recursos geotérmicos y la predicción de terremotos…


J995_Potencial de generación geotérmica en cada región

En un post anterior se menciona que Perú tiene varias regiones geotérmicas dándose un mapa del territorio peruano con la demarcación de dichas regiones geotérmicas… en otro post se colocó un listado de identificados zonas geotérmicas con potencial de generación de electricidad. En este post un gráfico complementario es el que se muestra e indica la capacidad de generación eléctrica desde fuentes geotérmicas por región getérmica en Perú. La Region 5 que corresponde al sur del país (Regiones de Tacna, Moquegua) colindantes con los países de Chile y Bolivia es el que tiene mayor potencial con manifestaciones a nivel de superficie bastante evidentes y fuertes que fácilmente califican como pozos geotérmicos de alta entalpía. Amuso que en Chile y Bolivia – más o menos cerca a la frontera con Perú – se tendrá identificadas fuentes geotérmicas, aunque en Chile el desierto de Atacama tiene un gran potencial para la generación solar fotovoltaica.


J994_Resumen del potencial geotérmico del Perú para la producción de energía eléctrica

En el presente post se muestra los datos del Ministerio de Energía y Minas del Perú en cuanto a los lugares con potencial para la generación de electricidad a partir de fuentes geotérmicas. Se puede observar la ubicación del campo geotérmico, su potencial capacidad efectiva de generación MWe y la región en que se ubica cada uno de ellos – incluye la región política y la región geotérmica (algo que hemos tratado en el post anterior) – lo que sumando capacidades sale que se podrían obtener unos 2,880 MW de electricidad, lo cual es casi la tercera parte de la capacidad instalada de generación en Perú e implicaría una notable reducción de la huella de carbono del sistema electroenergético peruano. Hay unos campos más promisorios que otros. La recomendación sería que quizás algunas buenas autoridades locales y/o regionales, hagan esfuerzos de gestión de cooperación internacional para que dichos proyectos se hagan realidad y tengamos por ejemplo: empresas eléctricas regionales públicas rentables y fiables – rescato acá el ejemplo de la Empresa de Electricidad de Arequipa en el Sur del Perú y que cuando el Gobierno Peruano la quería privatizar, bueno Arequipa no se deja… es por ello que sigue siendo Arequipa y dicha Empresa Eléctrica Pública continúa. Bolivia es el otro ejemplo. Quizás ambos tengan también sus deficiencias, a lo que voy es que con buena gestión, compromiso de las personas y claridad en la gestión se puede hacer muchas cosas desde el sector público.


J993_Mapa de Regiones Geotérmicas de Perú con relevantes Fuentes Geotérmicas

Perú ubicado en la parte occidental de América del Sur y con tres pisos naturales: costa, sierra y selva. Es recorrido por la Coordillera de los Andes y tiene mucho que ver con la interacción entre la Placa de Nazca y la Continental. Bastante activo en sismos – en especial en el mes de Octubre: mes de los temblores – tiene recursos geotérmicos distribuidos a lo largo del país, siendo los principales ubicados en la parte central y en especial sur del Perú. En la figura del presente post se presenta las Regiones Geotérmicas del Perú – lo pueden obtener de la Web del Ministerio de Energía y Minas del Perú – en la que además pueden ver los potenciales campos geotérmicos y de aguas termales – para recreación. Algunas aguas termales son muy buenas – medicinales – a lo que yo recomendaría que sean las municipalidades u asociaciones de base que se hagan cargo, porque saben que: si esto se vuelve turístico, lo agarran las grandes empresas que son las únicas beneficiadas, en cambio si lo hace la municipalidad u asociaciones de base, aparte que se mejora la gestión para atender la demanda, el beneficio es mucho mayor dado que la recaudación es un bien social y público… lamentablemente nos han enseñado y nos quieren dar cátedra de que: como personas naturales, asociaciones u gobiernos locales/regionales no podemos gestionar tales potenciales turísticos -como se dice por algunas malas experiencias o autoridades, no pueden pagar el pato todas las demas – en un país megadiverso como es el nuestro. Y extiendo mi apreciación a los demás países de habla hispana, aunque de ellos no tengo aún información de sus recursos geotérmicos… seguiré investigando.


J992_Comparación de venta de electricidad generada por Proyectos Geotérmicos y a Gas Natural

En el presente post se muestra una figura en que se muestra la comparación de costos de electricidad a partir de proyectos geotérmicos y de centrales a gas natural. Las centrales a gas natural son bastante usuales por su aparente bajo costo de instalación, sin embargo, tienen un fuerte componente en el costo del material primo – gas natural – que tiene que quemarse y por lo tanto emite CO2 a la atmósfera. Los gastos en energía geotérmica es lo contrario a como son las políticas económicas en latinoamérica – precio barato inicial y que sea rápido aunque después sea caro, lo interesante es ganar “opinión pública” – dado que los precios iniciales son altos, pero el costo de la electricidad es menor al del generado por gas natural y con los consiguientes beneficios de tener un mínimo (casi nulo) impacto sobre el medio ambiente. El retorno de la inversión es también bastante interesante en comparación con la del gas natural.


J991_Comparación entre la geotermia y otras Fuentes de Energía renovable

En anterior post se había tratado algo parecido con un indicador de o a 100 % de que tanto viable o no viable era tal o cual tecnología en un aspecto específico. En la presente figura pueden ser con un sí o un no (.). Todas las tecnologías son viables actualmente. Obviamente mientras que a mayor capacidad instalada los costos se reducen, el proyecto se hace más viable y los tiempos de inversión se acortan. Aclaro que procuro en éste blog pensar en producción de energía eléctrica en grande, es decir de varios MW o por decir varias decenas de MW o más, dado que eso es lo que pide el mercado eléctrico. Una microred por ejemplo es hasta 10 MW, la generación distribuida es de 50 MW y así por decirlo y hay más: centrales virtuales, smart grids, etc. En los conceptos de Ambiente y Disponibilidad, se tiene que analizar algunas tecnologías en base a las repercusiones del cambio climático en cada país y región dentro de cada país.


J990_Factores de capacidad de Planta para varios tipos de Energía Renovable

El factor de capacidad de planta es un parámetro importante dentro del estudio de una planta o central eléctrica. A veces puede tener un valor interesante desde el punto de vista de ingeniería, pero a los inversores no les gusta siempre, ellos desean tener los más altos valores en capacidad de planta, de esta manera la producción esta asegurada a cada vez más cerca a la capacidad instalada. La gráfica del presente post muestra un promedio de las capacidades de planta de diferentes centrales de generación eléctrica con tecnologías renovables (consideren que mi opinión es que el small hydro no es tecnologías renovables) y entre ellas lo que es geotérmica tiene un alto valor dado que el recurso siempre está disponible de ser explotado si es posible a su máxima capacidad. Algunos problemas con la obstrucción de ductos, formación de caliches, entre otras cosas son los que reducen en parte la capacidad de planta, pero esto frente a las demás tiene una gran diferencia. Si se ha implementado tecnologías como las PV y las eólicas que tienen una menor capacidad de planta, la geotérmica tiene la perspectiva de ser implementada a gran escala, pero seguro que para eso falta mejorar algunas tecnologías para que lo hagan más viable. En ello de hecho interviene la industria, universidades y centros de investigación que desean comprarse el lío de investigar y desarrollar tecnologías y materiales para hacer posible ello.


J989_Emisiones de CO2 en los ciclos de vida de las diferentes fuentes de energía

In the present post a comparasion has been development between differents energy sources: Coal, Oil Thermal, Single Cycle, Combined Cycle, Nuclear Power, Hydropower, Geothermal (my lecture interest in this days in this days), Solar PV Power and Windpower Plant. There is one cycle call “binary cicle” in Geothermal with minimum impacto in enviromental (cuasi zero CO2). Goethermal have a good potential in applications as heat and electric power generation. In Perú it have a promisore future and other countries too. Mathematical models and numerical simulations in Matlab/Simulink of this topic is of my interest.


J988_Comparación de generación de electricidad con Recursos Geotérmicos

En lo que son energías renovables hay diferentes tecnologías que permiten la generación de electricidad a partir de fuentes renovables. En la gráfica se muestra una comparación entre ellas, aunque sinceramente esto de las “Pequeñas Hidroeléctricas” no debería ser planteado como fuentes renovables, porque de hasta 20 MW ya involucra un cambio serio en el entorno medioambiental, hay que colocar un embalse y varias cosas más incluido la infraestructura y cambia el microclima local… Creo que lo colocaron para que digan: “estamos haciendo algo”… Bueno, hay calificativo de favorable y no favorable para los siguientes conceptos: Costos de generación; potencial técnico; desarrollo de la industria; estabilidad de la planta; factor de capacidad; potencial de uso combinado; emisiones de CO2 y uso de tierras.


J987_Planta Geotérmica para la Generación de Electricidad_Diagrama 1 J987_Planta Geotérmica para la Generación de Electricidad_Diagrama 2

En el presente post se muestra dos esquemas de uso de la energía geotérmica para la generación de electricidad hechos con el diseño de tipo binario. El fluido caliente proveniente del interior del planeta asciende y en la superficie ingresa a un intercambiador de calor en que cede parte de su calor hacia un segundo fluido el cual no tiene contacto directo con el fluido proveniente del pozo geotérmico. El vapor saturado o sobrecalentado se ingresa a una turbina de vapor de agua en el que parte de su energía se transforma en energía mecánica de rotación y se va expandiendo hasta su salida de la turbina en la que luego pasa a un condensador. El sistema puede tener una parte de alta y baja presión, es decir, una turbina de alta presión y otra turbina de baja presión. Útil en campos geotérmicos cuando se tiene altas temperaturas y presiones.

Para variar hay los que el vapor sale del pozo geotérmico e ingresa a un separador de vapor, en la que el líquido se reinyecta al pozo y el vapor pasa hacia la turbina de vapor. Acá hay que tener en cuenta la calidad del vapor por un lado y los componentes del vapor de agua por otro lado, dado que el agua en vapor no es corrosivo pero si los componentes que son arrastrados por el fluido proveniente del pozo geotérmico. El vapor forzado a recorrer la turbina entrega parte de su energía y la mezcla líquido – vapor a la salida se condensa y se reingresa hacia el interior del planeta.

Hay que considerar que hay una eficiencia en convertir parte de la energía térmica en mecánica y electricidad y eso es algo que se desea, pero tanto ya el consumo de dicha energía por el usuario final y la energía que se disipa hacia el medio ambiente por parte del condensador para volver líquida el agua, contribuyen a incrementar la carga térmica sobre el medio ambiente (por lo general la atmósfera) por el principio de conservación de la energía.


J986_Gradiente de temperatuar

Usualmente se dice que la temperatura al interior de la Tierra varía de manera constante y no es así. En principio debido a que los estratos terrestres son diferentes en cada lugar del planeta (la composición de las rocas y sustratos), incluso cambian con el tiempo con la interacción entre la lluvia, el viento, las mareas y con el progresivo movimiento de las placas. En la figura se observa una representación del cambio de temperatura a medida que se parte desde la superficie en un kilómetro. Los cambios de temperatura son importantes para determinar el material adecuado de las tuberías a fin de que puedan compensar las deformaciones, además, el cambio de temperatura da a saber las direcciones del flujo térmico y lugares en que también se esté generando calor. Esta curva refleja el estado estable de temperaturas al interior de la corteza, entonces como es estado estable, indica que si hay pérdida de energía en una dirección, hay ganancia en la otra dirección y por lo tanto la temperatura se muestra como tal; si esto se cumpliera se tendría una temperatura uniformemente variable en función de la profundidad, pero se observa que no lo es, entonces hay lugares en donde se pierde un poco más de energía y otros en los que se genera. Causas, motivos y variaciones en el tiempo son temas de estudio interesantes y dependen de la geología y la dinámica de la corteza en el lugar de estudio.


J985_Algunos proyectos de Geotermia en el mundo

Cada vez hay más proyectos de plantas geotérmicas en el mundo. En este mismo momento hay varios estudios en realización de factibilidad, exploración e inicios de perforación en diferentes países. En la figura se muestra algunas plantas geotérmicas que Uds lo pueden buscar ya en el WWW para mayor detalle de sus instalaciones y también, si están interesados el marco legal, de operación, del tema medioambiental y demás temas relacionados a la operación de las centrales geotérmicas. Incapié en las plantas de geotérmica ubicadas en la costa oeste de Norteamérica bastante asociadas a la Falla de San Andrés. También se puede ver en el contienente asiático, en Japón y los países cercanos a las Filipinas en que también hay una fuerte disposición a usar parte de esta energía. Esto nos dice además que las partes calientes están lo bastante cercanas a la superficie de la corteza o son lo bastante intensas que permiten ser explorados y explotados de manera rentable.


J984_Clasificación de los Recursos Geotérmicos según Temperatura del Reservorio

Los recursos geotérmicos se ubican por lo general al interior de la corteza con mayor o menor profundidad, y debido al hecho de que están inmersos, éstos llegar a tener una temperatura lo bastante uniforme en todo el campo geotérmico. Como se puede ver en la figura, diferentes autores dan recomendaciones de diferente nombre según la temperatura. Entonces, decir por lo general, “alta entalpía” llega a ser un término subjetivo y que según la persona puede interpretarlo a su manera. Es mejor mencionar la temperatura [°C] y la capacidad calorífica [kW-h/m3 ó kW-h/kg] o capacidad térmica (la cantidad de energía térmica que tiene cada unidad de volumen o masa al interior del pozo geotérmico de tal manera que no se pueda disminuir su temperatura, es decir, que tenga capacidad de flujo térmico constante que lo mantenga en su temperatura). Ahi en la figura están los diferentes autores y clasificación.


J983_Capacidad instalada a nivel mundial en Geotermia

Desde la crisis del petróleo de los 70’s, las plantas geotérmicas se han ido implementando principalmente en los países desarrollados. En esta parte del continente quizás México sea el que lleva la delantera en instalaciones geotérmicas. En Sudamérica aún se están haciendo esfuerzos para poder implementarlas. En otras latitudes el impulso ha sido fuerte y hay al menos más de una decena de GW instalados y en producción. Obviamente estas tecnologías requieren de personal especializado y el efecto en el medio ambiente se puede remediar, dado que sólo hay un efecto durante el proceso de perforación, pero ya luego de ubicado los ductos y las instalaciones, se puede volver a restablecer el entorno de la central geotérmica por medio de un programa medioambiental de recuperación. Lo bueno es que utilizan poco espacio, dado que los ductos van hacia el interior del planeta y no son como las hidro, centrales térmicas que queman combustibles y van gases de combustión al medio ambiente. La geotérmica se debe aprovechar al máximo para la cada vez creciente demanda eléctrica y que nutra hacia las otras tecnologías renovables para reducir en lo posible el consumo de combustibles fósiles.


J982_Beneficios de las plantas de producción de energía geotérmica

En la figura mostrada se observa los diferentes beneficios que se pueden obtener a partir de la energía geotérmica. Hay que cuidar que lo mejor y para no dañar el medio ambiente sea un uso a través de un ciclo binario sea para la producción de energía eléctrica o para calefacción o agua caliente. En el ciclo binario, el agua que se extrae del interior del planeta regresa al interior y su calor contenido se transfiere mediante un intercambiador de calor a otro fluido conformado por agua que se lleva para procesos, calentamiento o se transforma en vapor de agua para ser turbinado. Se puede utilizar en la industria (fabricación de productos). agricultura y ganadería, en piscinas y confort en casas, así como en la producción de energía eléctrica. Los beneficios son amplios, pero depende del lugar donde se instala la central geotérmica y del entorno poblacional y productivo que hay en cercanias.


J981_Distribución de placas tectónicas y puntos de mayor entalpía en la Tierra

En la figura del presente post se observa el nombre de las placas que hay en el planeta y su dirección de desplazamiento. Los puntos rojos son los lugares del planeta con mayor entalpía (esto quiere decir que las fuentes geotérmicas tienen el mayor valor de energía térmica contenida medible y potencialmente utilizable). En Sudamérica tenemos entre Perú y Chile y en el Ecuador, zonas de interés. La dirección de las placas pueden indicarnos las principales interacción entre ellas. Las placas actuales cumplen el patrón de movimiento desde la época del continente único Pangea hace millones de años, progresivamente avanzan en sus direcciones unos centímetros al año, es decir, constantemente hay desplazamientos entre placas y los sismógrafos siempre tendrán lecturas de ondas sísmicas (y acá no viene al caso de las tontas noticias periodísticas que “uy hubo sismo… la naturaleza se manifiesta”… obviamente da a saber su total desinformación e ignorancia…


J980_Esquemas de los diferentes tipos de fronteras entre placas

En la figura de este post se pueden apreciar los diferentes tipos de fronteras entre placas tectónicas que existen en nuestro planeta. Las fronteras convergentes ambas placas se acercan y la tendencia del terreno es ir hacia abajo (por lo general una de las dos placas), esto crea esfuerzos de compresión y cuyos eventuales deslizamientos debido a la superación del coeficiente de fricción entre placas genera sismos. Las fronteras de transformación se debe a que las placas se separan lateralmente predominando los esfuerzos de corte (prácticamente las placas tienen una fricción lateral, no afectada por el peso de las placas como se pudo apreciar en el anterior tipo de frontera) los cuales al ser superado el coeficiente de fricción genera sismos, esta fricción se basa más que todo en el área de contacto entre placas. En las fronteras divergentes ambas placas se separan y por lo tanto ese espacio es rellenado por material que asciende del interior del planeta que tienen un comportamiento plástico, este tipo de falla supongo que no debe generar ahí sismo apreciable, excepto que la separación de ellos se haga de golpe, esto debido a que la magma debajo de la placa sea tan fluido que la placa se deslice teniendo al otro lado de la placa libertad de dicho movimiento. Ambas fronteras convergentes y divergentes se pueden dar tanto en el fondo oceánico como en el continente.

 


J979_temperatura_vs_profunidad_tierra_geothermal

En la gráfica se puede observar como es la tendencia de temperatura al interior del planeta Tierra. En lo que es la corteza progresivamente se va incrementando (en otro post se da más detalle de esto). En la frontera entre la corteza y el manto hay un súbito incremento de la temperatura, obviamente debido a que hay la interacción entre materiales de dos fases: una sólida (corteza) y una que es un fluido bastante caliente (manto). A partir de ahí y a medida que se va interiorizando, la temperatura se va incrementando. Sin embargo, hay zonas de la corteza de la Tierra que son delgadas y por lo tanto, los fluidos calientes del interior del planeta pueden llegar hasta la superficie (la forma más notable son los volcanes).

Página siguiente »