Archivo para marzo 6th, 2016

Example of General hybrid power system model

A simple block diagram of a hybrid power system is shown in Figure. The sources of electric power in this hybrid system consist of a diesel generator, a battery bank, a PV array, and a wind generator. The diesel generator is the main source of power around the world. The output of the diesel generator is regulated ac voltage, which supplies the load directly through the main distribution transformer. The battery bank, the PV array, and the wind turbine are interlinked through a dc bus. The RTU (Remote Terminal Unit) regulates the flow of power to and from the different units, depending on the load. The integration of a RTU into a hybrid power system is important to enhance the performance of the system. The overall purpose of the RTU is to give knowledgeable personnel the ability to monitor and control the hybrid system from an external control center. Since the hybrid systems of interest in this research are located in remote areas, the ability for external monitoring and control is of utmost importance. The RTU is interfaced with a variety of sensors and control devices located at key locations within the hybrid system. The RTU processes the data from these sensors and transmits it to a control center. In addition, the RTU is also capable of receiving control signals and adjusting parameters within the system without the physical presence of the operating personnel.

Richard W. Wies, Ron A. Johnson, Ashish N. Agrawal and Tyler J. Chubb “Simulink Model for Economic Analysis and Environmental Impacts of a PV With Diesel-Battery System for Remote Villages” IEEE Transactions on Power Systems, Vol. 20, No. 2, May 2005


Example de AC Microgrid with Diesels CHPs PVs Boilers and conextion with Main Grid

This a example of a AC microgrid with differents equipment from usually photovoltaic solar plant (PV), CHPs, boilers and diesel generators. Many electric lines and loads placed on a characteristic topology of new tendence in market electrical

In-Su Bae and Jin-O Kim “Phasor Discrete Particle Swarm Optimization Algorithm to Configure Micro-grids” Journal of Electrical Engineering & Technology, Vol. 7, No.1, pp. 9 -16, 2012

Single-phase HFAC microgrid with active filters and DIEMS

The proposed DIEMS (distributed intelligent energy management system) allow instantaneous optimization of alternative and renewable power sources. The use of storage requires an optimization scheme that considers the time-integral part of the load flow. So, the energy management has to perform energy scheduling a single day or multiple days ahead. An intelligent energy management system in thus required which enables short-term energy allocation scheduling at minimun costs based on power generation and load demand. The function of the DIEMS is to generate set points for all the sources and storages in such a way that economically optimized power dispatch will be maintained to fulfill certain load demand. Generation forescast as well as some fast online algorithms are used to define the energy availability and, finally, to define the optimized power dispatch signals to the loads, as well as to the grid using UPLC (universal active power line conditioner). This energy management system, consists of prediction modulo, optimization module, and online control module, is shown in Figure.

Sudipta Chakraborty, Manoja D. Weiss and M. Godoy Simöes “Distributed Intelligent Energy Management System for a Single-Phase High-Frequency AC Microgrid” IEEE Transactions on Industrial Electronics. Vol. 54, No. 1, February 2007.