Archivo para octubre, 2016


pv-plant_solar-radiation-and-pv-solar-power-simulations

Dear audience. I am very happy in to write this post 1000 :)D . During many years, it has been a both exciting and hard work in read, understand, programming, modeling, simulations and analysis of results. The figure is a little photovoltaic power plant with its respective solar radiation. It has been implemented from mathematical models of thesys and books. The model is adaptable to PV plant of more power. Made in Matlab of MathWorks Inc.

Anuncios

wind_turbine_cpoutput-power-and-attack-angle

Hello dear audience of this my blog about energy renewables. The figure is a previous post and shows three fundamental curves in performance of wind turbine: power coeficient, output power and attack angle vs wind speed. It is all posible states by a wind turbine. In this power level, all wind turbine in massive production are horizontal axis. Graphics are placed in horizontal form for easy visualization. I want will that it be useful. Development on Matlab/Simulink of MathWorks Inc both ideal turbine, power coeficient and  optimization process in attack angle.


In this post there is three examples of load diagram for different users. The data is colected each hour. This data has been used for optimization process in the reference. The load diagrams are:

load-diagram-example-1

load-diagram-example-2

load-diagram-example-3

From:
Francisco Goncalves Goiana Mesquita.“Design Optimization of Stand-Alone Hybrid Energy Sytems”. Mestrado Integrado em Engenharia Electrotécnica e de Computadores Major Energía. Universidade do Porto. Portugal. 2010


a-typical-15-kw-diesel-engine-fuel-curve

Fossil fuel generators are commonly used in hybrid energy systems. Actually, most isolated power systems are based on fossil fuel, using internal combustion engines as prime movers. It is common to see diesel engine/generators in medium-sized and larger isolated systems. The smallest systems sometimes use gasoline and some very large isolated power systems occasionally use conventional oil-fired steam power plants. Diesel generators typically consist of three main functional units: a diesel engine, a synchronous generator with voltage regulator, and a governor (device which automatically regulates speed). The diesel engine is normally connected directly to a synchronous generator. A voltage regulator ensures the proper voltage is produced. The frequency of the AC power is directly proportional to the engine speed, which in turn is controlled by the governor.

Diesel engine generators are often called on to follow the load. That means that their output must be equal to the system load less the production of any other generators that might be producing energy -net load. As the load may go up and down, so must the electricity generated. This is known as part load operation. Generally, the conversion efficiency is less at part load than at full load. Fuel consumption over the full range of operation is summarized in fuel curves. In these curves, fuel consumption is graphed against engine loads (see figure). Regardless of efficiency considerations, manufacturers normally recommend that diesel generators not be run below some specified minimum power level, known as the minimum load. Typically, the minimum recommended load is between 25% and 50% of rated. Engines run for long periods at levels below the minimum recommended can experience a number of problems.

From:
Francisco Goncalves Goiana Mesquita.“Design Optimization of Stand-Alone Hybrid Energy Sytems”. Mestrado Integrado em Engenharia Electrotécnica e de Computadores Major Energía. Universidade do Porto. Portugal. 2010