Archivo para julio, 2018


Videos de mi Conferencia: “Introduction to Microgrids & Microsources”.
Movies of my Conference “Introduction to Microgrids & Microsources”.
Organizado por la Sección Estudiantil IEEE PES UNTELS.
Organized for Student Group IEEE PES UNTELS
Realizado el 12 de julio del 2018 en la Universidad Nacional Tecnológica de Lima Sur (UNTELS), Villa El Salvador, Lima, Perú.
Realized the July 12, 2018 in Universidad Nacional Tecnológica de Lima Sur (UNTELS), Villa El Salvador, Lima, Perú.
Para realizar proyectos, investigación, conferencias, tesis y demás servicios del conocimiento favor escribir a jmirez@uni.edu.pe ó al WhatsApp +51970030394
To carry out projects, research, conferences, theses and other knowledge services please write to jmirez@uni.edu.pe or WhatsApp +51970030394
Dar Me Gusta  a mi Fanpage http://www.facebook.com/jorgemirezperu
Please Like  to my Fanpage http://www.facebook.com/jorgemirezperu

Parte 1 de 2 (Part 1 of 2)

Parte 2 de 2 (Part 2 of 2)

Anuncios

Escribir al correo para que puedan ingresar a la universidad, el evento no tiene costo y de todas las universidades y demás instituciones públicas y privadas pueden ingresar …
Dar “Me Gusta a mi Fanpage – es probable que lo transmitamos”
Fanpage: https://www.facebook.com/jorgemirezperu/

Write to the mail so they can enter the university, the event has no cost and all universities and other public and private institutions can enter …
Give “I like my Fanpage – we transmit it through”
Fanpage: https://www.facebook.com/jorgemirezperu/

 


Como se puede ver en la Figura, el costo de la energía proveniente de las turbinas eólicas se ha venido reduciendo a medida que se incrementa la capacidad instalada de las mismas a nivel mundial. En grandes capacidades ha habido un ligero incremento y es debido principalmente a diseños cada vez más grandes que incrementan sus costos por el tamaño, transporte, dimensiones y desarrollo de nuevos materiales y demás tecnologías necesarias las cuales con el transcurso del tiempo y con la fabricación en serie se va reduciendo. Pero la tendencia general es a la reducción de los costos por cada kW-h.

Fuente: Antonio Moreno Munoz – Large Scale Grid Integration of Renewable Energy Sources.


En la Figura se muestra que a medida que se ha ido incrementando la capacidad de potencia instalada en centrales solares fotovoltaicas la reducción del precio se ha ido reduciendo de manera logarítmica. Esto se ha debido principalmente en que se ha mejorado la técnicas y tecnologías para la producción considerando también que es casi los mismos materiales los que se usan para los paneles solares (es decir, sirve tanto para pequeñas como para grandes instalaciones). La tendencia es entonces a seguir reduciéndose su costo por cada unidad de energía.

Fuente: Antonio Moreno Munoz – Large Scale Grid Integration of Renewable Energy Sources.


Las numerosas áreas de tecnología de las Smart Grids (cada una compuesta por conjuntos de tecnologías individuales) abarcan toda la red, desde la generación hasta la transmisión y distribución hasta varios tipos de consumidores de electricidad. Algunas de las tecnologías se están desplegando activamente y se consideran maduras en su desarrollo y aplicación, mientras que otras requieren mayor desarrollo y demostración. Un sistema de electricidad totalmente optimizado desplegará todas las áreas de tecnología en la Figura colocado en el presente post. Sin embargo, no es necesario instalar todas las áreas de tecnología para aumentar la “elegancia” de la red [1]

Estas áreas tecnológicas pueden ser complementadas con lectura adicional y que iré colocando en éste mi blog de manera progresiva, a lo que voy es que las Smart Grids son mucho más complejas de la “pincelada académica, mediática y comercial” que se le puede dar.

[1] IEA


El Escenario del Mapa BLUE estima que el sector del transporte representará el 10% del consumo total de electricidad para el año 2050 debido a un aumento significativo en vehículos eléctricos (EV) y vehículos eléctricos híbridos enchufables (PHEV) (Figura 5). Si la carga del vehículo no se gestiona de manera inteligente, podría aumentar la carga pico en la infraestructura eléctrica, lo que aumentaría las actuales demandas máximas de los sectores residencial y de servicios, y requeriría una gran inversión de infraestructura para evitar fallas en el suministro. La tecnología de red inteligente puede permitir que la carga se lleve a cabo de forma más estratégica, cuando la demanda es baja, haciendo uso de la generación de bajo costo y la capacidad adicional del sistema, o cuando la producción de electricidad a partir de fuentes renovables es alta. A largo plazo, la tecnología de red inteligente también podría permitir que los vehículos eléctricos devuelvan la electricidad almacenada en sus baterías al sistema cuando sea necesario.

En los Países Bajos, el proyecto colaborativo Mobile Smart Grid liderado por la distribuidora Enexis está estableciendo una red de sitios de recarga de automóviles eléctricos y está utilizando aplicaciones inteligentes de tecnología de información y comunicación (TIC) para permitir que la red eléctrica existente atienda la demanda de energía adicional. . Trabajando en conjunto con otros operadores de red, compañías de energía, proveedores de software y hardware, universidades y otros institutos de investigación, el proyecto debería resultar en soluciones simples para cargar y pagar automáticamente (Boots et al., 2010).


Los esfuerzos para reducir las emisiones de CO2 relacionadas con la generación de electricidad y reducir las importaciones de combustible han llevado a un aumento significativo en el despliegue de tecnología de generación variable. Se espera que este aumento se acelere en el futuro, con todas las regiones del mundo incorporando mayores cantidades de generación variable en sus sistemas de electricidad (ver Figura). Como las tasas de penetración de generación variable aumentan en niveles de 15% a 20%, y dependiendo del sistema eléctrico en cuestión, puede ser cada vez más difícil garantizar una administración confiable y estable de los sistemas eléctricos que dependen únicamente de arquitecturas de red convencionales y flexibilidad limitada. Las Smart Grids soportarán una mayor implementación de tecnologías de generación variable al proporcionar a los operadores información del sistema en tiempo real que les permite administrar la generación, la demanda y la calidad de la energía, aumentando así la flexibilidad del sistema y manteniendo la estabilidad y el equilibrio.

Hay algunos buenos ejemplos de enfoques exitosos para integrar recursos variables. El operador de sistemas de transmisión de Irlanda, EirGrid, está implementando tecnologías de Smart Grids, que incluyen conductores de baja temperatura y alta temperatura y sistemas de protección especial de clasificación de línea dinámica, para administrar la alta proporción de energía eólica en su sistema y maximizar la efectividad de la infraestructura. El funcionamiento del sistema se está mejorando a través de modelado de última generación y herramientas de apoyo a la toma de decisiones que proporcionan análisis de estabilidad del sistema en tiempo real, capacidad de despacho de parques eólicos y pronósticos de viento mejorados, y análisis de contingencia. Se estima que la flexibilidad del sistema y los enfoques de Smart Grids facilitan las penetraciones de viento en tiempo real hasta el 75% para 2020 (EirGrid, 2010).


La electricidad es el componente de más rápido crecimiento de la demanda total de energía global, con un consumo que se espera aumente en más del 150% en el Escenario de referencia del ETP 2010 y más del 115% entre 2007 y 2050 bajo el Escenario del mapa BLUE (IEA, 2010).

Se espera que el crecimiento de la demanda varíe según las regiones, ya que los países miembros de la OCDE experimentan aumentos mucho más modestos que las economías emergentes y los países en desarrollo (ver figura). En los países de la OCDE, donde las tasas de crecimiento moderadas se basan en altos niveles de demanda actual, las tecnologías de Smart Grids pueden proporcionar beneficios considerables al reducir las pérdidas de transmisión y distribución, y al optimizar el uso de la infraestructura existente. En las regiones en desarrollo con alto crecimiento, las tecnologías de Smart Grids pueden incorporarse en nuevas infraestructuras, ofreciendo mejores capacidades de funcionamiento del mercado y un funcionamiento más eficiente. En todas las regiones, las tecnologías de Smart Grids podrían aumentar la eficiencia del sistema de suministro y ayudar a reducir la demanda al proporcionar a los consumidores la información que necesitan para utilizar menos energía o usarla de manera más eficiente.

 


Los sistemas de electricidad del mundo enfrentan una serie de desafíos, como una infraestructura obsoleta, un crecimiento continuo de la demanda, la integración de un número creciente de fuentes variables de energía renovables y vehículos eléctricos, la necesidad de mejorar la seguridad del suministro y la necesidad de reducir las emisiones de carbono. Las tecnologías de Smart Grids ofrecen formas no solo de enfrentar estos desafíos, sino también de desarrollar un suministro de energía más limpia que sea más eficiente en términos de energía, más asequible y más sostenible.

Estos desafíos también deben abordarse con respecto al entorno normativo técnico, financiero y comercial único de cada región. Dada la naturaleza altamente regulada del sistema eléctrico, los proponentes de Smart Grids deben garantizar que interactúen con todas las partes interesadas, incluidos los fabricantes de equipos, operadores de sistemas, defensores del consumidor y consumidores, para desarrollar soluciones técnicas, financieras y normativas personalizadas que permitan el potencial de las Smart Grids.