Archive for the ‘AC Grid’ Category


Buenas horas a todos los que leen este mi blog.

A pedido de la comunidad transmití un videochat en el que hablé sobre energías renovables, ingeniería eléctrica y otros temas que iban pidiendo mediante mensajes, y cuyos enlaces lo coloco en el presente post para los seguidores de éste mi blog.

Espero les interese y presto a brindar mis servicios de consultoría y capacitación en temas de sistemas eléctricos, energías renovables, equipamiento para hospitales, elaboración y desarrollo de investigaciones, además de expedientes de instalaciones eléctricas y mecánicas; tanto a nivel nacional (Perú) como internacional. Mi email de contacto es jmirez@uni.edu.pe y por WhatsApp a +51970030394

PD: Información adicional lo pueden encontrar en mi fanpagehttp://wwwfacebook.com/jorgemirezperu y en mi blog de energías renovables y Matlab/Simulink https://jmirez.wordpress.com, otros blogs y redes sociales de interés lo pueden encontrar en http://www.geocities.ws/jorgemirez

Parte 1:

Parte 2:

Anuncios

Diapositivas de mi conferencia “Taller de Redacción y Elaboración de Papers” dictado en Pontificia Universidad Católica del Perú -PUCP en Lima, Perú; el miércoles 13 setiembre 2017 en el Facultad de Ciencias e Ingeniería, organizado por AIESEM. Van los JPG de las diapositivas.

El video lo pueden visualizar en mi fanpage http://www.facebook.com/jorgemirezperu o también a continuación:

 

 


Durante el Simposio Internacional de Ciencias e Ingeniería Perú Verano 2017 realizado del 2 al 4 de febrero del 2017 en los ambientes de la Universidad Nacional Tecnológica de Lima Sur, ubicado en el distrito de Villa El Salvador, Lima, Perú; fui parte de la organización y también ponente con el tema de “Redes Eléctricas Inteligentes” para un público principalmente de estudiantes de pregrado de diferentes carreras de ingeniería y docentes universitarios. A continuación las diapositivas de mi presentación. Contacto: jmirez@uni.edu.pe

 

Jorge Mírez – Servicios en Ingeniería y Educación. WebSite: http://www.geocities.ws/jorgemirez WhatsAap: (+51) 970030394 Sede: Lima, Perú (disponibilidad de ir a provincias y exterior).


Jorge Mírez Tarrillo_Publicidad-1

Transmisión en Vivo del Encuentro de Académicos y Profesionales Chota 2016. Hoy 28 Dic 2016. De 14 h (hora Perú) se da link YouTube


"Link de transmisión en vivo y en Directo en español del Encuentro de Académicos y Profesionales MAP Chota 2016 que se realiza hoy 28 Dic. a partir de las 14 h (hora de Perú) en el Complejo Cultural "Akunta" de la CIudad de Chota"....
Página Web: http://jmirez.wixsite.com/mapchota2016 
Fanpage: https://www.facebook.com/mapchota2016/
PD: Se invita a los que desean grabarlo, transmitirlo por radio, TV y/o cable el evento.
Link Youtube de transmisión en vivo: http://youtu.be/gJEeSJ4iNTA"
Link de transmisión en vivo y en Directo en español del Encuentro de Académicos y Profesionales MAP Chota 2016 que se realiza hoy 28 Dic. a partir de las 14 h (hora de Perú) en el Complejo Cultural “Akunta” de la CIudad de Chota”….
Página Web: http://jmirez.wixsite.com/mapchota2016
Fanpage: https://www.facebook.com/mapchota2016/
PD: Se invita a los que desean grabarlo, transmitirlo por radio, TV y/o cable el evento.

Link Transmisión en Vivo y en Directo en Español

http://youtu.be/gJEeSJ4iNTA

 

Meeting of Academics and Professionals / Encuentro de Académicos y Profesionales MAP Chota 2016. Miércoles 28 Dic 2016 (Wed, Dec 28, 2016). 14:00 h – 20:00 h. Lugar: Complejo Cultural “Akunta”. Chota, Perú.


afiche-poster-map-chota-0216 logo-horizontal-map-chota-2016 logo_2

Se invita a todos los que desean participar como Ponentes de este Encuentro. Las reglas son:

  1. Las ponencias serán de al menos 15 minutos.

  2. Hay espacio para 24 ponencias de 15 minutos.

  3. Las ponencias serán transmitidas vía internet por dos canales de YouTube (uno en español y otro en inglés con traductor en vivo).

  4. Los ponentes enviarán hasta el 21 de diciembre sus ponencias y CV para ser colocados en el Programa del evento.

  5. El modelo del CV en formato Word está disponible en el siguiente link: https://jmirez.files.wordpress.com/2016/12/map-chota-2016_nombreyapellidoponente_cv.docx

  6. El modelo de la presentación en formato PPT está disponible en: https://jmirez.files.wordpress.com/2016/12/ppt_mar-chota-2016_autor.pptx

  7. Los archivo PPT y Word enviarlo a jmirez@uni.edu.pe


Motivación del Encuentro

Las fiestas de fin de año reúnen a la familia y amigos, para lo cual se da el retorno de estudiantes, académicos y profesionales desde sus centros de estudio, investigación y de trabajo a sus ciudades de origen (en los diferentes ciudades y pueblos a nivel nacional)  a pasarla en familia, con las amistades o simplemente es un tiempo de retorno a nuestros lugares de origen.

Este es un motivo especial para reunirnos para conocernos y compartir lo realizado durante el año mediante la conversación y ponencias tanto en lo académico y en las experiencias profesionales sean éstas realizadas en el sector público como privado.

Chota, la Atenas del Norte del Perú, se viste de gala al organizar el MAP Chota 2016 e invita a ser parte de este encuentro entre estudiantes de escuelas, colegios, pregrado y postgrado, académicos, profesores, padres de familia, investigadores, profesionales, organizaciones de base y sociedad en general  de fin de año 2016 y hacemos el llamado a todas las ciudades del Perú a que se realicen eventos similares, y hacemos extensivo también a todos los pueblos y ciudades de América Latina.

Durante el MAP Chota 2016 estamos organizando algunas actividades extras: como un compartir; feria tecnológica, artesanal y artística; exposición de fotografías y de libros.

Las seis horas que durará el evento quedará guardado en YouTube y la participación en el evento como Ponente o Asistente es totalmente libre y gratuito. Quedan todos invitados a participar.

Página Web del Encuentro http://jmirez.wixsite.com/mapchota2016


PPT de mi videoconferencia: “Orientaciones para hacer modelamiento matemático y simulación numérica en Ingeniería Electromecánica” en Primeras Jornadas Tecnológicas Internacionales en Electromecánica, Universidad de las Fuerzas Armadas – ESPE, Unidad de Gestión de Tecnologías, Latacunga, Ecuador. 12 Dic 2016 3 pm (hora de Ecuador/Perú)

diapositiva1 diapositiva2 diapositiva3 diapositiva4 diapositiva5 diapositiva6 diapositiva7 diapositiva8 diapositiva9 diapositiva10 diapositiva11 diapositiva12 diapositiva13 diapositiva14 diapositiva15 diapositiva16 diapositiva17 diapositiva18 diapositiva19 diapositiva20

Invitados a dar Me Gusta en mi FanPage http://www.facebook.com/jorgemirezperu en donde pueden encontrar información de todas las publicaciones, notas y post hechos.


inversiones-historicas-y-proyectadas-en-transmision-y-distribucion-segun-iea-escenario-2ds

Las inversiones en transmisión y distribución ha ido incrementándose como se puede ver en la Figura y se prevé con un horizonte de tiempo al 2025 que el mayor incremento se dé en la redes de distribución.

Fuente: International Energy Agency. “Large-Scale Electricity Interconnecction: Technology and prospects for cross-regional networks”. IEA Publications http://www.iea.org. Paris, November 2016.


morebooks-jorge-mirez-libro-introduccion-modelamiento-simulacion-de-microredes-de-energia portada_primer_libro

Enlace del libro (información, precio, compra): https://www.morebooks.de/store/es/book/introducci%C3%B3n-al-modelamiento-y-simulaci%C3%B3n-de-microredes-de-energ%C3%ADa/isbn/978-3-639-63529-4

Introducción al Modelamiento y Simulación de Microredes de Energía
Un acercamiento a los sistemas eléctricos del futuro mediante la ingeniería, física, matemática y programación
Editorial Académica Española (2016-10-25 )

ISBN-13:978-3-639-63529-4
ISBN-10:3639635299
EAN:9783639635294

Idioma del libro:
Notas y citas / Texto breve:

En el libro desarrollo el modelamiento y simulación de una microred (microgrid) de voltaje continuo/alterno alimentado con fuentes solar fotovoltaica, eólica, de almacenamiento, una red eléctrica convencional (red de empresa pública o privada de electricidad) y que posee además cargas eléctricas. En dicha microgrid se realiza la evaluación del comportamiento de los parámetros del sistema: voltaje, corriente, potencia y energía eléctrica, en condiciones normales de funcionamiento. Matlab/Simulink de MathWork Inc. es la herramienta de simulación usada y los códigos son dados en Anexos. El libro está pensando para un amplio círculo de lectores, entre: (a) estudiantes de pregrado y postgrado de diferentes carreras relacionadas a la temática de microgrids, energias renovables y energia en general, como son de ingeniería mecanica, eléctrica, electrónica y electromecanico; física, matemática, computacion, economía, entre otras; (b) empresarios y profesionales que desean especializarse o ampliar sus conocimientos en energías renovables y/o modelamiento matemático y simulación numérica; (c) autoridades y público en general interesados en temas de energía.
Editorial: Editorial Académica Española
Sitio web: https://www.eae-publishing.com
Por (autor): Jorge Luis Mírez Tarrillo
Número de páginas: 240
Publicado en: 2016-10-25
Categoría: Tecnología
Palabras clave: Energías renovables, Microred, Modelamiento y Simulación, sistema eléctrico, Matlab Simulink

(Dénle Me gusta en mi Fanpage personal: http://www.facebook.com/jorgemirez )

Conferencia “Motivación en Ingeniería Mecánica Eléctrica, Biomédica y Espacial”. Ciclo de Charlas de Motivación – Lugar Polideportivo Colegio Nacional San Juan de Chota, Chota – Perú. Lunes 20 Junio 2016 – 9 am. Organiza: Promoción Bodas de Plata 1987-1991 “Horacio Zeballos Gamez” – CN San Juan de Chota (in spanish)


Single doubly fed induction machine with two fully controlled ac–dc power converters

Variable-Speed Concept Utilizing Doubly Fed Induction Generator (DFIG):In a variable-speed turbine with DFIG, the converter feeds the rotor winding, while the stator winding is connected directly to the grid. This converter, thus decoupling mechanical and electrical frequencies and making variable-speed operation possible, can vary the electrical rotor frequency. This turbine cannot operate in the full range from zero to the rated speed, but the speed range is quite sufficient. This limited speed range is caused by the fact that a converter that is considerably smaller than the rated power of the machine is used. In principle, one can say that the ratio between the size of the converter and the wind-turbine rating is half of the rotor-speed span. In addition to the fact that the converter is smaller, the losses are also lower. The control possibilities of the reactive power are similar to the full power-converter system. For instance, the Spanish company Gamesa supplies this kind of variable-speed wind turbines to the market. The forced switched power-converter scheme is shown in Figure. The converter includes two three-phase ac–dc converters linked by a dc capacitor battery. This scheme allows, on one hand, a vector control of the active and reactive powers of the machine, and on the other hand, a decrease by a high percentage of the harmonic content injected into the grid by the power converter.

Source:
Juan Manuel Carrasco, Leopoldo García Franquelo, Jan T. Bialasiewicz, Eduardo Galván, Ramón C. Portillo Guisado, Ángeles Martín Prats, José Ignacio León and Narciso Moreno-Alfonso “Power-Electronic Systems for the Grid integration of Renewable Energy Sources: A Survey”. IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, August 2006


Other example of microgrid con cell fuel wind turbine PV microturbine battery bank and loads

This microgrid have different elements: wind turbine, photovoltaics, fuel cell, battery bank, microturbine and interconection with main grifd. The level power is little but it is a interesting microgrid for study. It is a typical AC microgrid with load distribuited in many locations into microgrid. Main grind is a sub-transmission network in 20 kV.

Image Source:
Aris L. Dimeas, Nikos D. Natziargyriou “Operation of Multiagent System for Microgrid Control” IEEE Transactions on Power Systems, Vol. 20, No. 3, August 2005.


Actions sequence for the market operation in the time domain and Powerflows and bids in the microgrid

The overall procedure is the following:

1. The Market Operator (MO) announces the prices for selling (SP) or buying (BP) energy to the Microgrid. Normally it is SP>BP.
2. The local loads announce their demands for the next 15 minutes and an initial price (DP) for the kWh. It is DP>BPand DP<SP.
3. The production units accept or decline the load offer according to an Auction Price (AP).
4. The negotiation continues for a specific time (5 min).
5. After the end of the negotiation time, all the units have adjusted their set points. If there is no production unit within the Microgrid to satisfy the load demand, the power is bought from the grid. In addition, the grid can be considered as a load too, so the production or storage units can sell energy to the grid.

Source:
Aris L. Dimeas, Nikos D. Natziargyriou “Operation of Multiagent System for Microgrid Control” IEEE Transactions on Power Systems, Vol. 20, No. 3, August 2005.


Example of General hybrid power system model

A simple block diagram of a hybrid power system is shown in Figure. The sources of electric power in this hybrid system consist of a diesel generator, a battery bank, a PV array, and a wind generator. The diesel generator is the main source of power around the world. The output of the diesel generator is regulated ac voltage, which supplies the load directly through the main distribution transformer. The battery bank, the PV array, and the wind turbine are interlinked through a dc bus. The RTU (Remote Terminal Unit) regulates the flow of power to and from the different units, depending on the load. The integration of a RTU into a hybrid power system is important to enhance the performance of the system. The overall purpose of the RTU is to give knowledgeable personnel the ability to monitor and control the hybrid system from an external control center. Since the hybrid systems of interest in this research are located in remote areas, the ability for external monitoring and control is of utmost importance. The RTU is interfaced with a variety of sensors and control devices located at key locations within the hybrid system. The RTU processes the data from these sensors and transmits it to a control center. In addition, the RTU is also capable of receiving control signals and adjusting parameters within the system without the physical presence of the operating personnel.

Source:
Richard W. Wies, Ron A. Johnson, Ashish N. Agrawal and Tyler J. Chubb “Simulink Model for Economic Analysis and Environmental Impacts of a PV With Diesel-Battery System for Remote Villages” IEEE Transactions on Power Systems, Vol. 20, No. 2, May 2005


Example de AC Microgrid with Diesels CHPs PVs Boilers and conextion with Main Grid

This a example of a AC microgrid with differents equipment from usually photovoltaic solar plant (PV), CHPs, boilers and diesel generators. Many electric lines and loads placed on a characteristic topology of new tendence in market electrical

Source:
In-Su Bae and Jin-O Kim “Phasor Discrete Particle Swarm Optimization Algorithm to Configure Micro-grids” Journal of Electrical Engineering & Technology, Vol. 7, No.1, pp. 9 -16, 2012


A block diagram of grid interconnection unit

There is a significative difference storage system and electric power system interconnection unit. The microgrid usually has as high power from grid point of view that it is connected to medium voltage fine, typically 15 kV in Poland. Although the power system interconnection unit has almost the structure as storage system, its primary voltage is in range of kilovolts and is sinusoidal. So, it requires different power electronic converter. It is assumed in Poland that all devices connected to 15 kV lines have to be joined using 50 Hz transformer. Hence, the grid interconnection unit can have a structure shown in Figure.

Source:
Piotr Biczel. “Power Electronic Converters in DC Microgrid”. IEEE 5th International Conference – Workshop, Compatibility in Power Electronics, CPE 2007. Poland.


Typical Power Plant Power Output and End-Use Power Demands

In addition to economic benefits, other motivations helping to drive the transition toward small-scale, decentralized energy systems include increased concern for environmental impacts of generation, most especially those related to climate change, increased concern for the vulnerability of our centralized energy systems to terrorist attacks, and increased demands for electricity reliability in the digital economy.
A sense of the dramatic decrease in scale that is underway is provided in Table (top), in which a number of generation technologies are listed along with typical power outputs. For comparison, some examples of power demands of typical end uses are also shown. While the power ratings of some of the distributed generation options may look trivially small, it is the potentially large numbers of replicated small units that will make their contribution significant. For example, the U.S. auto industry builds around 6 million cars each year. If half of those were 60-kW fuel-cell vehicles, the combined generation capacity of
5-year’s worth of automobile production would be greater than the total installed capacity of all U.S. power plants.

Source:
Gilbert M. Masters. “Renewable and Efficient Electric Power Systems”. Jhon Wiley & Sons, Inc., New Jersey. ISBN 0-471-28060-7. 2004


Characteristics of Copper Wire

Wire size in the United States with diameter less than about 0.5 in. is specified by its American Wire Gage (AWG) number. The AWG numbers are based on wire resistance, which means that larger AWG numbers have higher resistance and hence smaller diameter. Conversely, smaller gage wire has larger diameter and, consequently, lower resistance. Ordinary house wiring is usually No. 12 AWG, which is roughly the diameter of the lead in an ordinary pencil. The largest wire designated with an AWG number is 0000, which is usually written 4/0, with a diameter of 0.460 in. For heavier wire, which is usually stranded (made up of many individual wires bundled together), the size is specified in the United States in thousands of circular mills (kcmil). For example, 1000-kcmil stranded copper wire for utility transmission lines is 1.15 in. in diameter and has a resistance of 0.076 ohms per mile. In countries using the metric system, wire size is simply specified by its diameter in millimeters. In Table gives some
values of wire resistance, in ohms per 100 feet, for various gages of copper wire at 68◦F. Also given is the maximum allowable current for copper wire clad in the most common insulation

Source:
Gilbert M. Masters. “Renewable and Efficient Electric Power Systems”. Jhon Wiley & Sons, Inc., New Jersey. ISBN 0-471-28060-7. 2004


FACTS devices can enhance the power flow on existing power lines. For the transmission line shown in figure, the sending end voltage isVS∠δS, the receiving end voltage is VR∠δR and the equivalent impedance of parallel connected lines isX. The power transfer through the lines is given by:

FACTS equation

the figure also shows how FACTS devices act on the power transfer equation. The TCSC can change the impedance of the line, the STATCOM can control the voltage magnitude at

FACTS applications for increased power transfer

the terminal to which it is connected by injecting or absorbing reactive power and the UPFC can alter the phase angle of the sending end voltage, thus power flow through a line can be controlled in a number of ways.

Source:
SMART GRID
TECHNOLOGY AND APPLICATIONS
Janaka Ekanayake
Cardiff University, UK
Kithsiri Liyanage
University of Peradeniya, Sri Lanka
Jianzhong Wu
Cardiff University, UK
Akihiko Yokoyama
University of Tokyo, Japan
Nick Jenkins
Cardiff University, UK
A John Wiley & Sons, Ltd., Publication