Archive for the ‘Calor’ Category


masa_util_en_CSCP

Primero doy gracias a todos quienes son participes presentes o la distancia del trabajo que realizo y que la presente lo comparto, es para engrandecerles a todos los actores que en mi vida han sido partícipes. Nuevamente presento otra parte del modelo del CSCP mostrado en la entrada anterior (J594), en ello ya muestro dos cosas: la cantidad de masa que sale caliente (a alta temperatura) del CSCP para uso en sistema de generación de vapor o para calefacción y las pérdidas por convección entre el vidrio del absorbedor y el medio ambiente.

La masa útil se muestra en la izquierda superior la cantidad de kg/s que salen calientes del CSCP, dado que se fija la temperatura de entrada y de salida, es la masa la cantidad a calcular y simular. Como se ve a medida que el sol irradia durante el dia se llega a un pico hacia el mediodia. No hay valores negativos y se ha configurado de tal manera que sólo sean condiciones iguales o mayores a cero a mostrar, que es un acercamiento a lo real.

En tanto a las pérdidas por tener el absorbedor que contiene al fluido a calentar y caliente, éste interactúa con el medio ambiente, las pérdidas de calor son por convección natural, la convección forzada es posible con algunas modificaciones. La irradiación solar directa es reflejada por los espejos y caen sobre el absorbedor el cual contiene una configuración especial para evitar las pérdidas por convección y radiación y permitir la mayor cantidad de transferencia hacia el fluido operante (por lo común una sal fundida). Sin embargo, las pérdidas se producen y se tienen que calcular.

Simulado en Matlab/Simulink, un excelente herramienta para la gente que trabaja en ciencias e ingeniería. Las condiciones locales de una aplicación en especial lo puedo realizar, además de asesorar también las tesis o proyectos de investigación en modelamiento y simulación… esto es muy interesante.


The information related to this post for sale for US $ 300.00. You can make payments through PayPal account: jorgemirez2002@gmail.com or send an e-mail to receive PayPal invoice and make your payment quickly and easily. Tell us (through e-mail) the name of the input or inputs that interests you. // La información relacionada con este post en venta por US $ 300.00. Usted puede hacer pagos a través de cuenta PayPal: jorgemirez2002@gmail.com o enviar un e-mail para recibir la factura de PayPal y hacer su pago de forma rápida y sencilla. Díganos (por medio de email) el nombre de la entrada o entradas que le interese.

Anuncios

calor_util_en_CSCP

 

En esta oportunidad deseo presentar un parte del diagrama en Simulink y resultados de una simulación sobre un CSCP.

La gráfica izquierda superior representa el calor útil almacenado en el fluido operante, luego de haber sido reducido por varias pérdidas ópticas, geométricas entre otras. El valor negativo es una cantidad de energía que se gasta en calentar el fluido desde un punto de arranque frío (es decir, durante el alba).

La gráfica izquierda inferior se visualiza la radiación solar de un día completo (24 horas). Se ha agregado para que las pérdidas se computen a partir de la salida del sol.

Los colores significan diferente función del dato dentro del programa: entradas, procesos, salidas. Los datos indicados ahí son generales los cuales pueden ser ajustados para cada aplicación en especial. La situación del modelo es que es principalmente por convección natural la interacción del CSCP con el medio ambiente, para casos de viento se puede adicionar pequeñas correcciones.

Os lo comparto y espero sea de su utilidad. El modelo ha sido realizado 100% por el autor del blog guiándome del trabajo de tesis de una universidad española. El modelo se puede mejorar (obvio) y permitir el cálculo de muchos más parámetros técnicos y económicos.


The information related to this post for sale for US $ 250.00. You can make payments through PayPal account: jorgemirez2002@gmail.com or send an e-mail to receive PayPal invoice and make your payment quickly and easily. Tell us (through e-mail) the name of the input or inputs that interests you. // La información relacionada con este post en venta por US $ 250.00. Usted puede hacer pagos a través de cuenta PayPal: jorgemirez2002@gmail.com o enviar un e-mail para recibir la factura de PayPal y hacer su pago de forma rápida y sencilla. Díganos (por medio de email) el nombre de la entrada o entradas que le interese.


wavelet_irradiation

En cada lugar o emplazamiento se tiene un comportamiento de irradiación durante el día desde muy nublado, lluvia hasta de cielo despejado. Es en este último caso el que se debe caracterizar durante varios días o el sistema lo puede hacer de manera automática. Dado que sobre la central fotovoltaica o térmica se tiene una atmósfera que aplicando los criterios reales esta compuesto de material no uniforme dadas las condiciones locales de espesor de atmósfera y la influencia del medio ambiente local sobre ella.

Esta data recolectada y depurada mediante técnicas como por ejemplo Wavelets se logra obtener una curva característica local de irradiación, podría decir, un patrón de irradiación de la central “x” digamos o del sector “A” de la central solar “x” por si puede decir asi.

Luego con ella, se puede determinar las diferencias con la irradiación que se presenta cada día, habrá cambios sea estos dados por la presencia de nubes, cambios en la composición de la atmósfera por lluvias, arena, humo, etc… en base a ello el control toma las decisiones de caso para asegurar una adecuada producción de electricidad en la calidad y cantidad suficientes que aseguren la mayor performance. La gráfica muestra diferencias de un día basado en 96 datos recolectados durante el día (24 horas). Al parecer las diferencias son pequeñas pero en centrales grandes estas involucran importantes cantidades de energía. La toma de decisiones se contraresta con la capacidad del sistema de adaptarse en configuración eléctrica para responder a estos cambios.


The information related to this post for sale for US $ 100.00. You can make payments through PayPal account: jorgemirez2002@gmail.com or send an e-mail to receive PayPal invoice and make your payment quickly and easily. Tell us (through e-mail) the name of the input or inputs that interests you. // La información relacionada con este post en venta por US $ 100.00. Usted puede hacer pagos a través de cuenta PayPal: jorgemirez2002@gmail.com o enviar un e-mail para recibir la factura de PayPal y hacer su pago de forma rápida y sencilla. Díganos (por medio de email) el nombre de la entrada o entradas que le interese.


visitas_jmirez_noviembre_2012

Muchas gracias por sus visitas, ha sido un mes bastante ajetreado y aun inconcluso en varias actividades.Es difícil es un medio a veces muy hostil hacer investigación, pues hay que trabajar en varios sitios a la vez, para poder cumplir con las responsabilidades y encima que no hay los medios adecuados de apoyo, y hay que estar de acá para allá en uno que otro ajetreo… y muchas veces, olvidarme de la vida personal y familiar que debe tener uno como cualquier ser humano.

Sin embargo, éste blog como los otros más, llevan el ánimo de contribuir al conocimiento y difusión de las diversas temáticas que se tratan. Quizás mañana pueda ser el último post, pero por mientras se pueda seguir escribiendo se hará… a ratos, ya me siento cansado y aburrido de estudiar y trabajar, esto es muy desgastante; he dejado tantas cosas mucho más importantes por lidiar con este camino que da pocos resultados positivos y muchos malos…. Finalmente, espero que esto valga la pena y que sirva a quienes lo lean estos posts.

En resumen las visitas fueron:
Noviembre 2012 –> 15545
Octubre 2012        –> 13527
Setiembre 2012  –>  11637
Agosto 2012         –>   9627
Julio 2012             –>    8054

Atte

Jorge Mírez
PERU



 


Esta temperatura de equilibrio resulta del análisis del comportamiento de un colector solar como un cuerpo negro. Es decir, en primer lugar parte de la radiación que llega del Sol es absorvido por el colector solar (su variable característica se llama absotividad) influido también por el ángulo de incidencia del colector solar (que por lo general se coloca de tal manera que durante todo el año se tenga la mayor captación de calor). Entonces tenemos esta energía que es capturada del Sol. Luego, como todo cuerpo negro emite radiación con cierta emisividad menor a uno que lo acerca a ser un objeto real porque cuerpo negro perfecto no existe.

En ese equilibro que resulta de la energia recibida y la energia emitida como cuerpo negro (Ecuación de Boltzmann) resulta esta temperatura máxima o temperatura de equilibrio radiante de la superficie negra del colector solar, luego de que se ha establecido el equilibrio térmico (trabajo en estado estable)


La variación de la distancia Tierra-Sol ocurre durante todo el año y esto llega consigo a que se debetenerse en cuenta, dado que va a producir una variación del flujo de radiación en el rango de ±3%. La dependencia de la radiación extraterrestre con el día del año se muestra en la figura del presente entrada.

Al atravesar la capa atmosférica, la radiación va a ser difundida y absorbida, incluso reflejada, por las moléculas en suspensión dentro de la misma, como por ejemplo el vapor de agua condensado en las nubes. No obstante, como habrá una cierta cantidad de radiación solar que no encontrará obstáculo y otra cantidad que sí, se introducen los siguientes conceptos:

  • Radiación directa: es la radiación solar recibida en la superficie terrestre sin que haya sufrido ningún cambio de dirección en su recorrido.
  • Radiación difusa: es la componente de la radiación solar recibida en la superficie terrestre despuésde que los procesos de dispersión (reflexión y difusión) por la atmósfera hayan modificado su recorrido.
  • Radiación de albedo: es la componente de la radiación solar procedente de la reflexión del suelo.

La radiación total será la suma de la radiación directa, difusa y de albedo.


Una de las tecnologías más desarrolladas para el tratamiento de los residuos sólidos urbanos es la incineración mediante hornos de parrillas rotatorias, la cual es una de las tecnologías más avanzadas, desarrolladas e implementadas a nivel mundial.

En la figura se observa las diferentes etapas a través de la planta, así como la recolección de cenizas y los tratamientos de los gases de escape, en ambos casos, para hacer de toda esta instalación compatible con el medio ambiente, es decir, que se elimine en lo posible todos los elementos nocivos que causarían daño al medio ambiente.

La caldera debido a su alta capacidad de incineración tiene todo lo que es de una caldera compleja como son los recuperadores, etapa de sobrecalentamiento, etc… sin embargo, se dispone de información tanto en papers como en tesis de instalaciones de menor capacidad, en donde, se da a saber la forma de como calcularlo y dimensionarlo, es más, hay empresas que ya lo venden en paquete, es decir, que solo basta decir que tengo tanta de producción de residuos al día y un estudio de cómo están compuestos para que se dé un dimensionamiento de una planta de incineración de éste tipo.

Espero que os sirva y obviamente cada parte de esta instalación se puede simular en Matlab/Simulink asi como casos muy especiales y detallados de procesos de transferencia de calor, sistemas eléctricos, control, etc… best regards.


Una de las formas más efectivas de quemar la biomasa es mediante un proceso de combustión de dos etapas y con dos ingresos de aire: primario y secundario.

La primera etapa sirve para la gasificación y primera combustión de lo desprendido por la biomasa, esto se logra con el ingreso de aire con cierto exceso para hacer una combustión eficiente, consideren que la biomasa ingresa con cierto porcentaje de humedad y que en algunos procesos de combustión toleran hasta 60% en peso de humedad… por lo tanto, la primera combustión sucede y produce calor, cenizas y los gases de combustión.

Sin embargo, debido a la naturaleza heterogeneo de la biomasa y a sus diferentes componentes químicos presentes en la biomasa, por lo general, se forman productos contaminantes en los gases de combustión tales como los oxidos de nitrógeno, etc… para evitar esto, lo que se hace es que los gases ingresen a una segunda combustión con aire secundario que permiten alcanzar temperaturas elevadas de tal manera que los componentes nocivos son rotos y descompuestos a elementos de menor peligrosidad y simplicidad.

La figura muestra el esquema general de los procesos involucrados con sus temperaturas, aire, productos y los flujos del proceso. La mejora constante de estos procesos es labor de las universidades, grupos y centros de investigación, porque no lo sólo es cuestión de reproducir algo que ya se conoce desde hacer tiempo (la humanidad desde la invención del fuego ha utilizado la combustión de la biomasa y aún ahora en el mundo muchos miles de millones de personas la utilizan) sino de optimizarla creando nuevas tecnologías y/o materiales para ello, en ese ánimo se espera que haya progresos en ello, y se invita a compartirlos.


Bueno si imaginamos un trozo de madera que ingresa a un cámara de combustión o en el simple cocina a leña, podemos observar la quema de la madera, más esto que al parecer es sencillo algo que es fácilmente reproducible hasta con un cerillo; más si se desea trabajar de manera más rigurosa, se debe cuantificar todo el proceso de combustión con el fin de optimizar la combustión desde los diferentes frentes tanto el termodinámico, económico, etc…

Por lo tanto, la figura se muestra la pérdida de masa de la madera bajo dos parámetros el tiempo y la temperatura; es decir, como va variando la masa en el tiempo de quema y con la temperatura que se va alcanzando en la combustión. Pueden observar que se ha hecho el estudio de la masa de manera adimensional, esto para poder mostrar de manera más lógica la pérdida de la masa durante todo el proceso que involucran tres etapas.

En los centros de investigación lo que hacen es probar diferentes tamaños y formas de madera para que este proceso sea de la mejor performance, y ahi trabajan, los investigadores en mejorar los procesos, obviamente esto involucrado con un sector industrial que está interesado en esto con la finalidad de presentar mejores productos al mercado.


Se define como el proceso exotérmico de oxidación completa de la materia de alta temperatura para convertirla en gas (principalmente vapor de agua y dióxido de carbono) y cenizas, además de calor. El comburente utilizado es generalmente aire. Es el proceso térmica más extendido para el procesado de residuos sólidos urbanos, y existen numerosas tecnologías para la incineración de residuos. Éstas pueden ser divididas genéricamente en dos grandes grupos:

  • Hogares de parrilla: horizontal o inclinada, fijas y móviles.
  • Hogares de lecho fluidizado: circulante, burbujeante o rotativo.

 

El funcionamiento de una planta incineradora con tecnología de parrilla de rodillos móviles se muestra en la ilustración. El diagrama muestra una incineradora de parrilla, en la que los residuos sólidos urbanos son introducidos en el horno a través de una tolva de alimentación mediante un pulpo. En el hogar se lleva a cabo el proceso de secado y combustión de los residuos, así mismo, el flujo de los mismos se logra mediante la utilización de un sistema de rodillos móviles inclinados, que además permiten remover y mezclar los RSU a fin de asegurar una combustión completa y homogénea.

Las cenizas resultantes de este proceso son recogidas y tratadas. El comburente empleado en la combustión es generalmente aire, el cual es introducido en el horno a través de los rodillos. Los gases resultantes de la combustión son posteriormente dirigidos a la caldera de recuperación con el fin de generar energía por medio de un ciclo de Rankine. Por último, antes de su emisión a la atmósfera deben ser sometidos a un proceso de limpieza mediante absorbedores y filtros con el fin de cumplir las restricciones en materia medioambiental.

Los hornos con tecnología de lecho fluidizado, en lugar de un sistema de parrilla, poseen un sustrato de arena refractaria que se mantiene en constante agitación gracias a un sistema de inyección de aire. Estos hornos están equipados con quemadores auxiliares que elevan la temperatura del lecho, mientras que los residuos son depositados en la parte superior del mismo, o bien inyectados desde la parte inferior. La fluidificación tiene lugar cuando la caída de presión del aire que atraviesa el lecho iguala el peso por unidad de sección transversal del mismo. La velocidad del aire a la que esto sucede se denomina velocidad de fluidificación mínima. Incrementar la velocidad por encima de este punto permite que el lecho se expansione permitiendo el burbujeo del mismo. A aproximadamente el doble de la velocidad de fluidificación mínima el lecho se comporta de forma similar a un líquido en ebullición, siendo este punto la región de funcionamiento habitual de los incineradores convencionales de lecho fluido burbujeante. Los hornos de lecho fluido circulante operan a velocidades de inyección de aire muy superiores (en torno a 20 veces la velocidad mínima de fluidificación) lo que genera una mayor turbulencia y arrastre de materiales del lecho posteriormente recuperados en un multiciclón.

De forma similar a las plantas con tecnología de parrilla, los gases son posteriormente enviados a una caldera para la generación de vapor. Los sistemas de limpieza de gases son esencialmente similares en ambas tecnologías. A continuación se muestran de forma esquemática ambos tipos de hornos.


La gasificación es un proceso consistente en la conversión de materia sólida o líquida en gas mediante una oxidación parcial con aplicación de calor, como se muestra esquemáticamente en la figura. La oxidación parcial se obtiene restringiendo el suministro del agente oxidante, generalmente aire. En el caso de que la materia a tratar sean residuos sólidos urbanos, compuestos en su mayoría por materia orgánica, el gas resultante del proceso de gasificación estará formado por una mezcla de monóxido de carbono, dióxido de carbono, hidrógeno, metano, agua, nitrógeno y pequeñas cantidades de hidrocarburos. Este gas generalmente tiene un reducido poder calorífico, del orden de 4 a 10 MJ/Nm3. Posteriormente, el gas puede ser empleado para generar energía en calderas, motores y turbinas.

Aunque el agente oxidante empleado en este proceso generalmente es aire, también puede emplearse oxígeno, en cuyo caso el gas resultante, conocido como gas de síntesis, tendrá un poder calorífico mayor (10 – 15 MJ/Nm3). En cualquier caso, el gas obtenido de la gasificación de RSU necesitará de un postratamiento para su adecuación como combustible.


La incineración es un proceso térmico de tratamiento de RSU recogido dentro del marco de gestión integral de residuos sólidos, por ejemplo, en Madria – España lo es bajo la Directiva Comunitaria 75/442/CE. Esta tecnología aporta una serie de ventajas:

  • Reducción en peso y volumen (95 %) de los residuos.
  • Protección del medio ambiente (fiabilidad de las instalaciones de depuración de gases y alta calidad de combustión).
  • Alta disponibilidad y fiabilidad.
  • Valorización energética de los residuos.
  • Disminución de la necesidad de vertederos.
  • Valorización de escorias y cenizas.

El proyecto consiste en el estudio y dimensionamiento de una planta incinedora de residuos sólidos urbanos, con tecnología de parrilla y recuperación energética. La motivación de este estudio radica en el previsible aumento del empleo de la incineración para el tratamiento de residuos en los próximos años; se preveé un aumento del empleo de la valorización energética en detrimento del vertido.

La planta proyectada está dimensionada para dar servicio a una población de 300 000 habitantes, con una capacidad de incineración anual de 180 288 toneladas. Por razones de versatilidad, se  ha dotado a la planta con dos líneas de incineración, cada una de ellas con capacidad para procesar 12 t/h.

La tecnología escogida para el horno es la de parrilla de rodillos, por su capacidad para incinerar el residuo en bruto según llega a la planta, sin necesidad de tratamiento previo. El PCI de diseño, según el análisis de diferentes muestras de residuos, es de 1798 kcal/kg, por lo que la carga térmica de diseño de hornos se ha establecido en 25 MW, admitiéndose un rango de operación entre el 110% y el 60% del punto de diseño. La configuración adoptada para el hogar, así como para los sistemas de inyección de aire primario y secundario, permite la obtención de una combustión de alta calidad materializada en un bajo porcentaje de inquemados, y en la garantía de un tiempo de residencia de los gases de combustión de al menos dos segundos a temperaturas superiores a 850 °C para la destrucción de las dioxinas y furanos. Así mismo, el horno contará con un sistema de inyección de amoniaco para la desnitrificación de los gases.

Adjunto al horno de incineración se dispondrá un sistema de recogida y valorización de escorias.

El sistema de recuperación energética consistirá en una caldera de circulación natural y tiro horizontal para la generación de vapor, que formará una unidad con el hogar de parrilla para optimizar el aprovechamiento del calor. Las condiciones del vapor están limitadas a 420 °C y 40 bar, para prolongar la durabilidad de las superficies calefactoras y reducir el riesgo de corrosión inherente a la naturaleza agresiva de los gases de combustión. La producción de vapor estimada es de aproximadamente 53 t/h. La potencia generada prevista en el grupo turboalternador es de 12.5 MW, entregándose a la red 10.6 MW después de descontar la parte destinada a autoconsumo.

La planta contará con un sistema de tratamiento de gases, de forma que cumpla con las restricciones sobre emisiones recogidas por la normativa española y europea. Este sistema consistirá en un proceso de depuración semiseco, con inyección de lechada de cal y carbón activo, para la eliminación de los gases ácidos, metales pesados, y compuestos orgánicos (dioxinas y furanos), además de un filtro de mangas para la retención de partículas volantes. Se dispondrá de un sistema de medición y monitorización continuo de los diferentes parámetros de emisión para la verificación del proceso de depuración.

Con el fin de controlar la operación de la planta, ésta contará con un sistema de control automatizado, que regulará los diferentes parámetros de operación en función de los posibles cambios en la naturaleza o cantidad, del flujo de residuos de alimentación.

El presupuesto total, incluyendo el diseño, construcción y puesta en funcionamiento de la planta asciende a setenta y ocho millones ciento ochenta y seis mil euros (78.186.000 euros).  Considerando una vida útil de 25 años, se prevé un Pay-back de 11 años con un TIR del 8.12%, siendo el rendimiento contable de 1.52, por lo demás, el proyecto propuesto es interesante desde la perspectiva económica.

Reportado en:

Alejandro Fernández Martínez. “Planta de Incineración de Residuos Sólidos Urbanos con Tecnología de Parrilla y Recuperación Energética”. Proyecto Fin de Carrera. Escuela Técnica Superior de Ingeniería. Universidad Pontificia Comillas. Madrid, España. 2007.


Cuando se realiza la evaluación de las carácterísticas operativas de un generador de vapor que quema combustible heterogéneo, como basuras o desechos sólidos urbanos, no es posible obtener una muestra representativa del combustible, ya que la composición de las basuras puede varias mucho. Para el diseño de calderas que las queman, los datos se concentran en el análisis elemental del combustible promedio y en la variación de los componentes, humedad y ceniza; los cálculos de diseño son los mismos que los de calderas que queman combustibles homogéneos.

Cuando se quema un combustible heterogéneo, para evaluar sus características medias y determinar el rendimiento de la caldera, la práctica industrial más generalizada consiste en considerar la caldera como un calorímetro. Para calcular el rendimiento de la unidad, el método emplea los mismos principios que los utilizados cuando se analiza el combustible; la diferencia radica en que el régimen del flujo y el contenido en humedad de los mismos se miden directamente, basándose en el análisis del combustible y en la medida del O2 presente en los humos.

Otras medidas adicionales que se requieren respecto a métodos convencionales, son:

  • Flujo de humos y humedad presente en los mismos.
  • O2 y CO2 en los humos.
  • Régimen de flujo de residuos en los principales puntos de extracción.

Para hacer el ensaye se calculan el exceso de aire, el peso de los humos secos y el agua evporada procedente del combustible, se determinan:

  • El peso de los humos húmedos y su contenido de humedad.
  • El peso de los humos secos que se calcula como diferencia entre las dos cifras anteriores.

La composición de los humos se determina midiendo el O2 y CO2. EL nitrógeno N2a = 100 – (O2 + CO2). El N2(humos) = N2a, con un peso molecular de 28.16 lb/mol. El N2(combust) se desprecia, porque los quemadores de basura siempre operan con un exceso de aire elevado.

La humedad global presente en los humos puede proceder de vapor o de líquidos:

  • Los procedente de vapores se debe:
    • A la humedad del aire.
    • Al vapor de atomización.
    • Al vapor de sopladores.
  • Los procedente de líquidos se debe a:
    • La presente en el combustible.
    • La que se forma por la combustión del H2 del combustible.
    • La que se genera por el agua de apagado de los residuos o cenizas.
    • La relativa a los rociadores existentes en el foso de combustible.

La humedad del aire y la procedente de otras fuentes de vapor se tiene que medir, ya que las pérdidas de rendimiento por calor sensible se deben separar de las pérdidas por agua evaporada, que es la humedad total presente en los humos, menos la debida a fuentes de vapores.

El gasto de aire seco se calcula por medio del N2(humos). El aire exceso se determina con el O2. El aire teórico = aire_total – aire_exceso. El % aire exceso se calcula con los flujos gravimétricos de aire_exceso y aire_teórico.


Un generador de vapor requiere de una fuente de calor a un determinado nivel de temperatura; un combustible fósil se quema en el hogar de la caldera y producir calor, aunque también se puede emplear energía residual procedente de otros procesos.

La combustión es la combinación rápida de O2 con los elementos inflamables del combustible. En la mayoría de los combustibles fósiles hay tres elementos combustibles significativos: C, H2 y S; el S es el de menor importancia como fuente de calor, pero puede tener una influencia importante en problemas de corrosión y contaminación.

El objetivo de una buena combustión es liberar toda la energía del combustible, a la vez que se minimizan las pérdidas derivadas de las imperfecciones de la combustión y del aire.

La combinación de los elementos inflamables del combustible con el oxígeno, requiere de:

  • Temperatura lo suficientemente alta para la ignición de los elementos inflamables.
  • Turbulencia que facilite el íntimo contacto combustible – oxígeno.
  • Tiempo suficiente para completar el proceso.

Estos parámetros se designan frecuentemente como las tres T de la combustión: Temperatura, Tiempo, Turbulencia.

La tabla a continuación relaciona los elementos químicos, simples y compuestos, que se encuentran en los combustibles normalmente utilizados en los diversos tipos de generación de vapor comercial de calor.


La incineración utiliza la descomposición térmica mediante el proceso de oxidación a alta temperatura (800 – 1100°C) y como consecuencia destruye la fracción orgánica del residuo y se reduce el volumen. Este método debe cumplir criterios de funcionamiento y operación;  es decir, una alta eficiencia de combustión, destrucción y remosión de gases tóxicos, un límite permisible en la emisión de partículas, un monitoreo semicontinuo en el proceso, una temperatura mínima específica así como niveles aceptables de tiempo de residencia de los gases generados en el combustor.  Diversas tecnologías de incineración se han desarrollado para diferentes tipos y formas físicas de residuos destacándose diseños de inyección líquida, hornos rotatorios, hornos fijos y lechos fluidizados. Los combustores de lecho fluidizado representan una de las tecnologías más prometedoras para la incineración de residuos orgánicos, plásticos, lodos contaminados y biomasa.

La combustión debe ser controlada para reducir las emisiones a la atmósfera, por lo que se ha estudiado la correlación entre la temperatura, el tiempo de residencia y el grado de emisión. En la operación de una planta piloto de lechos fluidizados, los investigadores Saxena & Jotshi (1994) registraron emisiones de SOx entre 20 y 35 ppm, de NOx entre 100 y 139 ppm, así como porcentajes de oxígeno en la corriente de gas de 13.4 y 16.1 %. Swithenbank (1997) encontraron que un incinerador de residuos clínicos, la concentración de oxígeno fue de 16.9 % en la corriente de salida del gas. Por otro lado, Hasfelriis (1987) y Wang (1993) han registrado que ciertas condiciones de operación minimizan la formación de CO y reducen la emisión de dioxinas y furanos. Wiley (1987) sugirió un nivel de oxígeno de 1 a 2 % en volumen como mínimo, involucrando un incremento de 5 a 10% de exceso de aire al sistema, para alcanzar la oxidación óptima del combustible y evitar la formación de monóxido de carbono (CO).

La generación excesiva de RSM acorta cada vez más la vida útil de los rellenos sanitarios y sitios de disposición final; por ello, es necesario evaluar e implementar alternativas de tratamiento que no sólo disminuyan el volumen y área sino que puedan ofrecer beneficios económicos y energéticos como lo ofrecen los lechos fluidizados, los cuales son altamente factibles.


Entre los factores ambientales de importancia vital para el funcionamiento de los digestores figuran: la temperatura, la concentoración de sólidos, la concentración de ácidos volátiles, la formación de espuma, la concentración de nutrientes esenciales, las substancias tóxicas y el pH.

Las metanobacterias sólo podrán desarrollarse cuando está tan avanzada la fermentación de los substratos primarios como almidón, celulosa o péptidos por acción de las bacterias anaerobias facultativas (por ejemplo Escherichia, Enterobacter, Klebsiella o Bacillus spp.), que se haya consumido todo el oxígeno disuelto, de manera que el potencial redoz se sitúe en un valor suficientemente bajo, menor que -200 mV. Además, el pH no debe disminuir demasiado debido a los ácidos como el acético o el butírico producidos por los Clostridium, para no inhibir el crecimiento de los metanógenos sensibles.

Comúnmente la concentración de ácidos grasos volátiles no supera los 2 – 3 g/L, expresados como ácido acético. Si se sobrepasa este nivel, la formación de metano puede disminuir mientras que continúa la producción ácida y, la digestión cesará en dos o tres días debido a que los metanógenos no pueden utilizar los ácidos a la misma velocidad con que se producen. El pH óptimo para la digestión está entre 7.0 y 7.2, aunque el rango satisfactorio va de 6.6 a 7.6. La digestión comienza a inhibirse a pH 6.5.

Una vez que se ha estabilizado un digestor el lodo está bien amortiguado, es decir, la concentración de protones no varía aún cuando se añaden cantidades relativamente grandes de ácido o álcali. Si esta capacidad de amortiguación se destruye y el pH disminuye, el digestor se “agria” o sea emite olores ácidos desagradables y cesa la metanogénesis. El CO2 es soluble en agua y reacciona con los iones hidróxilo para formar bicarbonato. La concentración de HCO3 es afectada por la temperatura, el pH y la presencia de otros materiales en la fase líquida y las condiciones que favorecen su producción a su vez aumentan el porcentaje de metano en la fase gaseosa.

La gama de temperatura para la digestión anaeróbica varía entre 10 y 60°C. Sin embargo las dos zonas óptimas son la mesófila (30 – 40 °C) y la termófila (45 – 60°C). Casi todos los digestores funcionan dentro de los límites de temperaturas mesofílicas y la diegstión óptima se obtiene a unos 35°C. La velocidad de digestión a temperaturas superiores a 45°C es mayor que a temperaturas más bajas. Sin embargo, dentro de esta gama de temperaturas, las bacterias son sumamente sensibles a los cambios ambientales y el mantenimiento de estas temperaturas elevadas resulta costoso y a veces diíficil.

Por ejemplo, en un digestor donde los residuos permanecen 12 días, la producción de gas por unidad de sólidos volátiles totales añadidos diariamente es 20% mayor a 45°C que a 35°C. La digestión no sufre por un aumento de temperatura de unos cuantos grados. Pero una disminución repentina de sólo unos pocos grados puede detener la producción de metano sin afectar a las bacterias productoras de ácidos y esto conduce a una acumulación excesiva de ácidos provocando la falla del digestor.

En los climas cálidos, donde no existen temperaturas de congelación, los digestores pueden funcionar sin añadir calor pero hay que aumentar en cambio el tiempo de retención de los residuos en el digestor. La regulación de la temperatura puede lograrse haciendo circular agua caliente a través del contenido del tanque. La regulación de la temperatura en los digestores grandes por medio de termointercambiadores exige un equipo bueno y seguro y un mantenimiento continuo.

Las causas principales de una excesiva producción de ácidos volátiles son la elevada velocidad de carga, una baja temperatura y la formación de espuma. Ésta constituye una zona que favorece a los acetógenos. La sedimentación de los materiales fibrosos y la espuma se puede evitar mezclando el contenido del digestor, lo que también contribuye al proceso ya que establece condiciones uniformes.

La presencia de substancias tóxicas puede impedir el desarrollo bacteriano. Los antibióticos empleados en las explotaciones pecuarias llegan a los excrementos pero, como ocurre también con los antihelmínticos, no suelen afectar mayormente la digestión debido a la dilución con materiales no tóxicos. Las concentraciones de nitrógeno amoniacal deben ser inferiores a 1.5 g/L. Si bien es un amortiguador, su aumento puede llegar a impedir el proceso. También resultan tóxicas las sales de zinc, níquel y cobre, aunque este último puede ser necesario en ínfimas cantidades. Las sales de los elementos alcalinos y alcalino-térreos pueden ser estimulantes o inhibitorias según la concentración. Para una digestión óptima, todos los elementos esenciales en el metabolismo microbiano tienen que estar presenes en forma fácil de asimilar por las bacterias.


Hola, en la presente figura vemos que el principal elemento es el gasificador que recibe diferentes elementos a gasificar, como biomasa, residuos, etc. Hay residuos sólidos del gasificador y también el mismo gas que por un proceso de limpieza, primero de eliminación de particulas y de retiro de azufre, para luego quedar como un gas listo a disponer como combustible. Sin embargo, en el proceso, se puede obtener productos como el hidrógeno que se destina a la producción de electricidad en células de combustible y también como combustible siendo quemado en las cámaras de las turbinas de gas para la generación de electricidad. Los gases de combustión de las turbinas de gas pasa por un recuperador de calor  o generador de vapor con destino a una turbina de vapor conectado mecánicamente a un generador para la producción de electricidad.

Sin embargo el gasificador también necesita de aire, oxígeno y vapor. Estos son suministrados desde diferentes elementos de la configuración mostrada en la figura. La finalidad es aprovechar todos los recursos energéticos para incrementar la eficiencia del sistema.