Archive for the ‘Corriente Continua’ Category

Conferencia “Motivación en Ingeniería Mecánica Eléctrica, Biomédica y Espacial”. Ciclo de Charlas de Motivación – Lugar Polideportivo Colegio Nacional San Juan de Chota, Chota – Perú. Lunes 20 Junio 2016 – 9 am. Organiza: Promoción Bodas de Plata 1987-1991 “Horacio Zeballos Gamez” – CN San Juan de Chota (in spanish)


Información en detalle disponible en:

https://radiotelescopesnanosatellite.wordpress.com/2016/06/17/conferencia-motivacion-en-ingenieria-mecanica-electrica-biomedica-y-espacial-ciclo-de-charlas-de-motivacion-lugar-polideportivo-colegio-nacional-san-juan-de-chota-chota-peru-lunes-20-junio/

Anuncios

Conceptual diagram of a dc-bus microgrid system

The dc-bus microgrid link the diferent component of the microgrid both loads as sources. The figure is a general representation with conextion to AC-grid, wind turbine, PV solar plant, DC and AC loads, Batteries, fluwheel, micro turbine, AC/DC converser, DC/AC converser and DC/DC converser.

Source:
S. Vimalraj, P. Somasundaram, “Fault Detection, Isolation and Identification of Fault Location in Low-Voltage DC Ring Bus Microgrid System,” Int. J. Advanced Res. in Electrical, Electronics and Instr. Eng. vol. 3, special iss. 2, pp: 570-582, Apr. 2014


The schematic diagram for the dc micro-grid proposal for Bangladesh

In this system, a PV-diesel hybrid concept with dc grid has been proposed where the PV panel is not placed in any central location but distributively placed on roof tops at conventional locations. The number of solar PVs placed on a roof is such that they can be connected directly to the grid. The diesel generator is needed to give support to the system during bad weather and reduce the battery storage for the system. Diesel generator is placed at a convenient location and in case of higher demand; several diesel generators could be installed at the same place as per increased load demand. Diesel generators would be connected to the grid via ac-dc converters. A battery may be placed to store the power generated from diesel generator. Each consumer is connected to the grid and is metered for the energy consumed. Schematic diagram of a dc micro grid and a typical setup inside the consumer premises is shown in Figure. A consumer will have a dc-dc converter to convert the high grid voltage to nominal 12 V and charge a battery set up individually at the premises to store energy. It may be mentioned here that the charge controller to protect the battery is built inside the converter. During the day time, solar panels will produce output to be stored in the batteries of the individual customers. The size of the batteries will be deduced as per their energy demand. The customer has two options so far the household loads are connected-he/she can use all dc loads or can use an inverter (similar to an IPS) to have 240 Vac load in his house. This option will be useful when the actual power consumption by some of the consumers (well off consumers) are high and rich enough to use household gadgets like fridge, TV etc.

Source:
Syed Enam Reza, Mou Mahmood, A. S. M Kalkobad, Ehasanul Kabir, Nahid-ur-Rahman Chowdhury, “A Novel Load Distribution Technique of DC Micro-Grid Scheme on PV-Diesel Hybrid System for Remote Areas of Bangladesh,” Int. J. Scient. & Tech. Res., vol 2, issue 1, pp: 133-137, Jan. 2013


Variable-speed wind turbine with a hydrogen storage system and a fuel-cell system that reconverts hydrogen to electrical grid

As the wind penetration increases, the hydrogen options become most economical. Also, sales of hydrogen as a vehicle fuel are more lucrative than reconverting the hydrogen back into electricity. Industry is developing low-maintenance electrolysers to produce hydrogen fuel. Because these electrolysers require a constant minimum load, wind turbines must be integrated with grid or energy systems to provide power in the absence of wind.

Electrical energy could be produced and delivered to the grid from hydrogen by a fuel cell or a hydrogen combustion generator. The fuel cell produces power through a chemical reaction, and energy is released from the hydrogen when it reacts with the oxygen in the air. Also, wind electrolysis promises to establish new synergies in energy networks. It will be possible to gradually supply domestic-natural-gas infrastructures, as reserves diminish, by feeding hydrogen from grid-remote wind farms into natural-gas pipelines. The Figure shows a variable-speed wind turbine with a hydrogen storage system and a fuel cell system to reconvert the hydrogen to the electrical grid…

Source:
Juan Manuel Carrasco, Leopoldo García Franquelo, Jan T. Bialasiewicz, Eduardo Galván, Ramón C. Portillo Guisado, Ángeles Martín Prats, José Ignacio León and Narciso Moreno-Alfonso “Power-Electronic Systems for the Grid integration of Renewable Energy Sources: A Survey”. IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, August 2006


Five-level cascaded multilevel converter connected to a multipole low-speed wind-turbine generator

The use of low-speed permanent-magnet generators that have a large number of poles allows obtaining the dc sources from the multiple wounds of this electrical machine, as can be seen in Figure. In this case, the power-electronic building block (PEBB) can be composed of a rectifier, a dc link, and an H-bridge. Another possibility is to replace the rectifier by an additional H-bridge. The continuous reduction of the cost per kilowatt of PEBBs is making the multilevel cascaded topologies to be the most commonly used by the industrial solutions. This as one alternative to multinivel conversors.

Source:
Juan Manuel Carrasco, Leopoldo García Franquelo, Jan T. Bialasiewicz, Eduardo Galván, Ramón C. Portillo Guisado, Ángeles Martín Prats, José Ignacio León and Narciso Moreno-Alfonso “Power-Electronic Systems for the Grid integration of Renewable Energy Sources: A Survey”. IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, August 2006


Two HVDC transmission solutions_Classical LCC-based system with STATCOM and VSC-based system

Classical HVDC transmission systems [as shown in Figure (a)] are based on the current source converters with naturally commutated thyristors, which are the so-called linecommutated converters (LCCs). This name originates from the fact that the applied thyristors need an ac voltage source in order to commutate and thus only can transfer power between two active ac networks. They are, therefore, less useful in connection with the wind farms as the offshore ac grid needs to be powered up prior to a possible startup. A further disadvantage of LCC-based HVDC transmission systems is the lack of the possibility to provide an independent control of the active and reactive powers. Furthermore, they produce large amounts of harmonics, which make the use of large filters inevitable. Voltage-source converter (VSC)-based HVDC transmission systems are gaining more and more attention not only for the grid connection of large offshore wind farms. Figure (b) shows the schematic of a VSC-based HVDC transmission system

Source:
Juan Manuel Carrasco, Leopoldo García Franquelo, Jan T. Bialasiewicz, Eduardo Galván, Ramón C. Portillo Guisado, Ángeles Martín Prats, José Ignacio León and Narciso Moreno-Alfonso “Power-Electronic Systems for the Grid integration of Renewable Energy Sources: A Survey”. IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, August 2006


Single doubly fed induction machine with two fully controlled ac–dc power converters

Variable-Speed Concept Utilizing Doubly Fed Induction Generator (DFIG):In a variable-speed turbine with DFIG, the converter feeds the rotor winding, while the stator winding is connected directly to the grid. This converter, thus decoupling mechanical and electrical frequencies and making variable-speed operation possible, can vary the electrical rotor frequency. This turbine cannot operate in the full range from zero to the rated speed, but the speed range is quite sufficient. This limited speed range is caused by the fact that a converter that is considerably smaller than the rated power of the machine is used. In principle, one can say that the ratio between the size of the converter and the wind-turbine rating is half of the rotor-speed span. In addition to the fact that the converter is smaller, the losses are also lower. The control possibilities of the reactive power are similar to the full power-converter system. For instance, the Spanish company Gamesa supplies this kind of variable-speed wind turbines to the market. The forced switched power-converter scheme is shown in Figure. The converter includes two three-phase ac–dc converters linked by a dc capacitor battery. This scheme allows, on one hand, a vector control of the active and reactive powers of the machine, and on the other hand, a decrease by a high percentage of the harmonic content injected into the grid by the power converter.

Source:
Juan Manuel Carrasco, Leopoldo García Franquelo, Jan T. Bialasiewicz, Eduardo Galván, Ramón C. Portillo Guisado, Ángeles Martín Prats, José Ignacio León and Narciso Moreno-Alfonso “Power-Electronic Systems for the Grid integration of Renewable Energy Sources: A Survey”. IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, August 2006


distribution demand between micosourses electrical network external and storage in a microgrid DC

Sun –> energy provided from photovoltaic energy plant.
Wind –> similar from wind turbine(s)
Batt –> similar from battery bank
ene –> similar injected from electrical network external or utility electric network

In other image in red is the total suministed for this sources and red line is the demand. Other images is cost, evoluction of energy supply from each source and more details. It is made for me (Jorge Mírez) in Matlabb/Simulink and I utilized concept of linear programming. Image is from my destokp laptop.


Example of General hybrid power system model

A simple block diagram of a hybrid power system is shown in Figure. The sources of electric power in this hybrid system consist of a diesel generator, a battery bank, a PV array, and a wind generator. The diesel generator is the main source of power around the world. The output of the diesel generator is regulated ac voltage, which supplies the load directly through the main distribution transformer. The battery bank, the PV array, and the wind turbine are interlinked through a dc bus. The RTU (Remote Terminal Unit) regulates the flow of power to and from the different units, depending on the load. The integration of a RTU into a hybrid power system is important to enhance the performance of the system. The overall purpose of the RTU is to give knowledgeable personnel the ability to monitor and control the hybrid system from an external control center. Since the hybrid systems of interest in this research are located in remote areas, the ability for external monitoring and control is of utmost importance. The RTU is interfaced with a variety of sensors and control devices located at key locations within the hybrid system. The RTU processes the data from these sensors and transmits it to a control center. In addition, the RTU is also capable of receiving control signals and adjusting parameters within the system without the physical presence of the operating personnel.

Source:
Richard W. Wies, Ron A. Johnson, Ashish N. Agrawal and Tyler J. Chubb “Simulink Model for Economic Analysis and Environmental Impacts of a PV With Diesel-Battery System for Remote Villages” IEEE Transactions on Power Systems, Vol. 20, No. 2, May 2005


General block diagram of the DC microgrid power plant

El block diagram structure of a microgrid is shown in Figure. The main task of the power plant’s power electronic converter is to fit primary energy converter’s output voltage to the microgrid power line voltage, and source operating point control as well as low and high level microgrid’s control. The converter’s structure depends on a type of primary energy converter. A common feature of the converters concerns their output current. It should be permanent and low ripple.

Source:
Piotr Biczel. “Power Electronic Converters in DC Microgrid”. IEEE 5th International Conference – Workshop, Compatibility in Power Electronics, CPE 2007. Poland.


A example of DC microgrid

Many examples there is in this blog about DC microgrids (see last post or search in blog). This blog is for share information of actual tendence in electricity. It is part of my research as doctoral student in physics in National University of Engineering in Lima, Perú; and actually I am writing in english. For last post, the blog have a traductor box option. Near to 1000 post about diferents topic in renewable energy focused in microgrid, smartgrid and its modelling ans simulation witn Matlab/Simulink. I know this software and its very good, practical for science and engineering. In May or June is possible I will expose mi thesys doctoral, previus days or weeks I posted the exact time for all people see in live or via internet. This figure is other DC microgrid scheme with different technologies interconnected at a some bus DC for transfered electric power. Jorge Mírez (please visit and link my fanpage http://www.facebook.com/jorgemirezperu  )

Source of Figure:
N. R. Rahmanov, N. M. Tabatabaei, K. Dursun, O. Z. Kerimov. “Combined AC-DC Microgrids: Case Study – Network Development and Simulation” International Journal on Technical and Physical Problems of Engineering. September 2012, Issue 12, Volume 4, Number 3, Pages 157 – 161.


 

Example of a hybrid microgrid

This a typical scheme of a microgrid AC/DC. It maybe contain many technologies as micro-source, storage, loads and monitoring and control. Un Microgrid Bus linked the different components.

Source:
N. R. Rahmanov, N. M. Tabatabaei, K. Dursun, O. Z. Kerimov. “Combined AC-DC Microgrids: Case Study – Network Development and Simulation” International Journal on Technical and Physical Problems of Engineering. September 2012, Issue 12, Volume 4, Number 3, Pages 157 – 161.


Microgrid operation of islanded operation

The figure illustrates the concept of the power management method in the islanded mode. When a DC micro-grid must be separated from the ac grid and switch to the islanded mode, the grid-tied converter released control of the DC grid voltage and one of the converters in the micro-grid must take over that control. Since each converter of DGs is used for optimal control of each source, only the converters of the energy storage elements are free to regulate the DC grid voltage. During the islanded mode, the battery plays a main role in regulating the DC grid voltage and the super-capacitor plays a secondary role in responding to the sudden power requirement as an auxiliary converter.

Source:
Ji-Heon Lee, Hyun-Jun Kim, Byung-Moon Han, Yu-Seok Jeong, Hyo-Sik Yang and Han-Ju Cha “DC Micro-Grid Operational Analysis with a Detailed Simulation Model for Distributed Generation” Journal of Power Electronics, Vol. 11, No. 3, May 2011


energy of each source accumulate

In a microgrid, each energy source is required according to the criterion of costs and production capacity. During the operation time, accumulative energy from each source is represented in the figure. Criteria of linear optimization has been used in this modelling and simulation. This allows determining the nominal capacity and the ability to respond to sudden requests. Made on Matlab of MathWorks Inc.


Characteristics of Copper Wire

Wire size in the United States with diameter less than about 0.5 in. is specified by its American Wire Gage (AWG) number. The AWG numbers are based on wire resistance, which means that larger AWG numbers have higher resistance and hence smaller diameter. Conversely, smaller gage wire has larger diameter and, consequently, lower resistance. Ordinary house wiring is usually No. 12 AWG, which is roughly the diameter of the lead in an ordinary pencil. The largest wire designated with an AWG number is 0000, which is usually written 4/0, with a diameter of 0.460 in. For heavier wire, which is usually stranded (made up of many individual wires bundled together), the size is specified in the United States in thousands of circular mills (kcmil). For example, 1000-kcmil stranded copper wire for utility transmission lines is 1.15 in. in diameter and has a resistance of 0.076 ohms per mile. In countries using the metric system, wire size is simply specified by its diameter in millimeters. In Table gives some
values of wire resistance, in ohms per 100 feet, for various gages of copper wire at 68◦F. Also given is the maximum allowable current for copper wire clad in the most common insulation

Source:
Gilbert M. Masters. “Renewable and Efficient Electric Power Systems”. Jhon Wiley & Sons, Inc., New Jersey. ISBN 0-471-28060-7. 2004


cargas residencial comercial

Cargas residenciales o domiciliarias, dado que tienen el mismo comportamiento junto con las cargas comerciales son simuladas en Matlab/Simulink  de MathWork Inc. y los resultados se muestran en el presente post. Se ha considerado un tiempo de simulación de 72 horas, para el cual se ha cargado los datos de registro de ambos tipos de cargas. Sirve como parte de un sistema mucho más grande en que las cargas eléctricas son una parte de los equipos y elementos que lo constituyen. Estamos hablando de redes de distribución o también microredes. Uno de los problemas que se tiene a simular es calibrar el eje horizontal a la escala de tiempo de simulación, dado que Matlab/Simulink cuenta estados, esta cantidad de estados resueltos por las ecuaciones tiene que luego ser escalados al tiempo de simulación. Redes eléctricas, microredes y SmartGrid son las cosas que me interesan.


The information related to this post for sale for US $ 50.00. You can make payments through PayPal account: jorgemirez2002@gmail.com or send an e-mail to receive PayPal invoice and make your payment quickly and easily. Tell us (through e-mail) the name of the input or inputs that interests you. // La información relacionada con este post en venta por US $ 50.00. Usted puede hacer pagos a través de cuenta PayPal: jorgemirez2002@gmail.com o enviar un e-mail para recibir la factura de PayPal y hacer su pago de forma rápida y sencilla. Díganos (por medio de email) el nombre de la entrada o entradas que le interese.


a hybrid ac-dc microgrid system

La figura muestra el concepto de un sistema híbrido ac/dc donde varias fuentes y cargas ac y dc son conectadas a sus correspondientes redes ac y dc. Las redes ac y dc están conectadas a través de dos transformadores y conversores trifásicos ac/dc bidireccionales. Pueden observar la diversidad de micro fuentes que se está utilizando en la descripción de la microred, incluye los diferentes dispositivos de electrónica de potencia que sirven para adecuar la energía eléctrica desde fuentes y para cargas eléctricas. Hay vehículos eléctricos conectados a la microred. Los generadores eólicos tienen diferentes configuración de control (diferentes tipos de turbinas eólicas). Un grupo electrógeno diesel también se da, dado que estos grupos se consideran los que en último caso darán energía a la microred eléctrica en situaciones ya críticas pero a la vez rentables en lo posible en economía. Para todo esto se crea modelos matemáticos de cada elemento y luego se integran en un solo programa en que se puedan cambiar las condiciones de trabajo y analizar las variables de respuesta de lo que se desea estudiar. Yo lo hago en Matlab/Simulink para quienes deseen que les brinde el servicio de asesoramiento.


The information related to this post for sale for US $ 10.00. You can make payments through PayPal account: jorgemirez2002@gmail.com or send an e-mail to receive PayPal invoice and make your payment quickly and easily. Tell us (through e-mail) the name of the input or inputs that interests you. // La información relacionada con este post en venta por US $ 10.00. Usted puede hacer pagos a través de cuenta PayPal: jorgemirez2002@gmail.com o enviar un e-mail para recibir la factura de PayPal y hacer su pago de forma rápida y sencilla. Díganos (por medio de email) el nombre de la entrada o entradas que le interese.


turbine_performance_simulation

En la presente entrada muestro el resultado de un proceso de simulación en Matlab/Simulink de una turbina de viento de 100 kW sobre la cual incide un perfil de velocidades recolectadas durante un período de tiempo de 24 horas. Pueden ver como es que el comportamiento de las diferentes variables tales como la corriente, la potencia, el coeficiente de potencia y el ángulo de ataque. En sí el perfil de velocidad es cada hora, pero bien se puede colocar un data recolecta de menor tiempo de toma de datos, eso haría una gráfica bastante aleatoria por lo que he tratado en esta vez de que se vea un tanto asequible y entendible. Lo que se puede hacer mediante modelos matemáticos construidos adecuadamente y procesos de simulación en software de alto nivel es amplio y poderoso, siempre y cuando se tenga la capacidad de evaluar los resultados bajo un adecuado nivel de crítica, conocimientos de ingeniería y de buscar siempre la perfección del modelo matemático.

PD: Por si acaso el modelo de turbina hecho en Matlab/Simulink está a la venta.


The information related to this post for sale for US $ 1000.00. You can make payments through PayPal account: jorgemirez2002@gmail.com or send an e-mail to receive PayPal invoice and make your payment quickly and easily. Tell us (through e-mail) the name of the input or inputs that interests you. // La información relacionada con este post en venta por US $ 1000.00. Usted puede hacer pagos a través de cuenta PayPal: jorgemirez2002@gmail.com o enviar un e-mail para recibir la factura de PayPal y hacer su pago de forma rápida y sencilla. Díganos (por medio de email) el nombre de la entrada o entradas que le interese.


VAN

Cualquier instalación de equipos de energía involucra en sí la realización de un proyecto que parte desde atender una necesidad energética o en todo caso proyectarse hacia una demanda energética por abastecerse. Una de las fuentes son las alternativas renovables, las que hay que considerar que son las turbinas eólicas, energía solar, etc. Estas tienen un costo inicial que en sí es una inversión que se cuenta en negativo, a partir de ahí el proyecto va recuperando su inversión en la medida que el costo de energía producida es menor al que se hubiera seguido usando la misma fuente energética. La figura muestra dos casos tanto para un usuario en baja tensión como en media tensión con valores asumidos, de implementación de paneles solares. Un usuario en baja tensión recupera mucho más rápido su inversión, pero al final del proyecto que viene a ser unos 15 años ambos están en ganancia. Recordar que los paneles solares los venden ahora con una garantía de 20 años y hasta de 25 años. Los modelo matemático y las curvas son hechas en Matlab de MathWork Inc.


The information related to this post for sale for US $ 200.00. You can make payments through PayPal account: jorgemirez2002@gmail.com or send an e-mail to receive PayPal invoice and make your payment quickly and easily. Tell us (through e-mail) the name of the input or inputs that interests you. // La información relacionada con este post en venta por US $ 200.00. Usted puede hacer pagos a través de cuenta PayPal: jorgemirez2002@gmail.com o enviar un e-mail para recibir la factura de PayPal y hacer su pago de forma rápida y sencilla. Díganos (por medio de email) el nombre de la entrada o entradas que le interese.


en elaboración… libero el contenido si de 780 se incrementa a 3000 “Me Gusta” Emoticón like mi fanpage personal…https://www.facebook.com/jorgemirezperu

energía solar en establecimientos de salud a modo de microred eléctrica