Archive for the ‘Corriente Continua’ Category

Meeting of Academics and Professionals / Encuentro de Académicos y Profesionales MAP Chota 2016. Miércoles 28 Dic 2016 (Wed, Dec 28, 2016). 14:00 h – 20:00 h. Lugar: Complejo Cultural “Akunta”. Chota, Perú.


afiche-poster-map-chota-0216 logo-horizontal-map-chota-2016 logo_2

Se invita a todos los que desean participar como Ponentes de este Encuentro. Las reglas son:

  1. Las ponencias serán de al menos 15 minutos.

  2. Hay espacio para 24 ponencias de 15 minutos.

  3. Las ponencias serán transmitidas vía internet por dos canales de YouTube (uno en español y otro en inglés con traductor en vivo).

  4. Los ponentes enviarán hasta el 21 de diciembre sus ponencias y CV para ser colocados en el Programa del evento.

  5. El modelo del CV en formato Word está disponible en el siguiente link: https://jmirez.files.wordpress.com/2016/12/map-chota-2016_nombreyapellidoponente_cv.docx

  6. El modelo de la presentación en formato PPT está disponible en: https://jmirez.files.wordpress.com/2016/12/ppt_mar-chota-2016_autor.pptx

  7. Los archivo PPT y Word enviarlo a jmirez@uni.edu.pe


Motivación del Encuentro

Las fiestas de fin de año reúnen a la familia y amigos, para lo cual se da el retorno de estudiantes, académicos y profesionales desde sus centros de estudio, investigación y de trabajo a sus ciudades de origen (en los diferentes ciudades y pueblos a nivel nacional)  a pasarla en familia, con las amistades o simplemente es un tiempo de retorno a nuestros lugares de origen.

Este es un motivo especial para reunirnos para conocernos y compartir lo realizado durante el año mediante la conversación y ponencias tanto en lo académico y en las experiencias profesionales sean éstas realizadas en el sector público como privado.

Chota, la Atenas del Norte del Perú, se viste de gala al organizar el MAP Chota 2016 e invita a ser parte de este encuentro entre estudiantes de escuelas, colegios, pregrado y postgrado, académicos, profesores, padres de familia, investigadores, profesionales, organizaciones de base y sociedad en general  de fin de año 2016 y hacemos el llamado a todas las ciudades del Perú a que se realicen eventos similares, y hacemos extensivo también a todos los pueblos y ciudades de América Latina.

Durante el MAP Chota 2016 estamos organizando algunas actividades extras: como un compartir; feria tecnológica, artesanal y artística; exposición de fotografías y de libros.

Las seis horas que durará el evento quedará guardado en YouTube y la participación en el evento como Ponente o Asistente es totalmente libre y gratuito. Quedan todos invitados a participar.

Página Web del Encuentro http://jmirez.wixsite.com/mapchota2016

Anuncios

design-of-entire-system-microgrid-dc

Este es un esquema bastante interesante aunque no lo veo tan práctico, sin embargo, considero que el autor visualizó la idea de dos lugares diferentes con diferente potencial energético renovable en la misma área en que se implementa la microred. Hacia el lado izquierdo se visualiza turbinas eólicas como fuente de generación renovable y en la derecha se visualiza que son paneles solares. En ambos lados se tienen cargas AC y DC. El bus de la microred prácticamente está partido en dos. A ambos sub-bus se conectan con conversores AC/DC a un sólo bus o barra que viene a ser la del punto de común acoplamiento con la red eléctrica externa, a la que también está conectada un sistema de almacenamiento que da soporte a ambas partes de la microred. Existen también supercapacitores, pero considero que estos están más que todo por asuntos de mejorar la calidad de la energía eléctrica que por un respaldo en bloque de toda o parte de la microred.

Fuente: Wenchao Fan, Zaijun Wu, Xiaobo Dou et at “Design of a Microgrid with Low-Voltage Ride-Through Capability and Simulation Experiment”. Journal of Applied Mathematics, Vol.2014, Art. ID 324527


crecimiento-de-la-capacidad-de-transmision-en-alto-voltaje-hvdc

Con el rápido crecimiento de las fuentes renovables, el crecimiento en acceso a la electricidad; la electrificación de nuevos servicios en transportes, industria y construcciones; y la necesidad de construir una red inteligente, nuevas tecnologías para la transmisión de potencia sobre largas distancias y entre sistemas de potencia tienen la expectativa de crecer más allá de sus niveles actuales de implementación. La Figura muestra el histórico de crecimiento y la prospectiva hacia el año 2025 de las líneas de transmisión en HVDC.

Fuente: International Energy Agency. “Large-Scale Electricity Interconnecction: Technology and prospects for cross-regional networks”. IEA Publications http://www.iea.org. Paris, November 2016.


microgrids and applications uni symposion electrical engineering pes ieee nov 2016

Cordialmente invitados a mi conferencia hoy miércoles 23 de noviembre desde las 5:45 pm a 6:45 pm en el Auditorio de la Facultad de Ingeniería Eléctrica y Electrónica de la Universidad Nacional de Ingeniería (ingreso por la puerta 5 de la universidad). Esta ponencia lo doy en el marco del VII Simposio de Ingeniería Eléctrica dedicado a las Energías Renovables organizado por la Sección PES de la Rama IEEE de la Universidad Nacional de Ingeniería de Perú. Desde la necesidad energética mundial, los recursos renovables, el cambio climático, los sistemas eléctricos avanzados, las microredes son tratados para terminar la exposición con mostrar al auditorio detalles de la investigación sobre interconexión entre microredes de corriente continua.

PD: Si alguien desea grabar la conferencia, favor me avisa para luego subirlo a YouTube.


morebooks-jorge-mirez-libro-introduccion-modelamiento-simulacion-de-microredes-de-energia portada_primer_libro

Enlace del libro (información, precio, compra): https://www.morebooks.de/store/es/book/introducci%C3%B3n-al-modelamiento-y-simulaci%C3%B3n-de-microredes-de-energ%C3%ADa/isbn/978-3-639-63529-4

Introducción al Modelamiento y Simulación de Microredes de Energía
Un acercamiento a los sistemas eléctricos del futuro mediante la ingeniería, física, matemática y programación
Editorial Académica Española (2016-10-25 )

ISBN-13:978-3-639-63529-4
ISBN-10:3639635299
EAN:9783639635294

Idioma del libro:
Notas y citas / Texto breve:

En el libro desarrollo el modelamiento y simulación de una microred (microgrid) de voltaje continuo/alterno alimentado con fuentes solar fotovoltaica, eólica, de almacenamiento, una red eléctrica convencional (red de empresa pública o privada de electricidad) y que posee además cargas eléctricas. En dicha microgrid se realiza la evaluación del comportamiento de los parámetros del sistema: voltaje, corriente, potencia y energía eléctrica, en condiciones normales de funcionamiento. Matlab/Simulink de MathWork Inc. es la herramienta de simulación usada y los códigos son dados en Anexos. El libro está pensando para un amplio círculo de lectores, entre: (a) estudiantes de pregrado y postgrado de diferentes carreras relacionadas a la temática de microgrids, energias renovables y energia en general, como son de ingeniería mecanica, eléctrica, electrónica y electromecanico; física, matemática, computacion, economía, entre otras; (b) empresarios y profesionales que desean especializarse o ampliar sus conocimientos en energías renovables y/o modelamiento matemático y simulación numérica; (c) autoridades y público en general interesados en temas de energía.
Editorial: Editorial Académica Española
Sitio web: https://www.eae-publishing.com
Por (autor): Jorge Luis Mírez Tarrillo
Número de páginas: 240
Publicado en: 2016-10-25
Categoría: Tecnología
Palabras clave: Energías renovables, Microred, Modelamiento y Simulación, sistema eléctrico, Matlab Simulink

(Dénle Me gusta en mi Fanpage personal: http://www.facebook.com/jorgemirez )

Conferencia “Motivación en Ingeniería Mecánica Eléctrica, Biomédica y Espacial”. Ciclo de Charlas de Motivación – Lugar Polideportivo Colegio Nacional San Juan de Chota, Chota – Perú. Lunes 20 Junio 2016 – 9 am. Organiza: Promoción Bodas de Plata 1987-1991 “Horacio Zeballos Gamez” – CN San Juan de Chota (in spanish)


Conceptual diagram of a dc-bus microgrid system

The dc-bus microgrid link the diferent component of the microgrid both loads as sources. The figure is a general representation with conextion to AC-grid, wind turbine, PV solar plant, DC and AC loads, Batteries, fluwheel, micro turbine, AC/DC converser, DC/AC converser and DC/DC converser.

Source:
S. Vimalraj, P. Somasundaram, “Fault Detection, Isolation and Identification of Fault Location in Low-Voltage DC Ring Bus Microgrid System,” Int. J. Advanced Res. in Electrical, Electronics and Instr. Eng. vol. 3, special iss. 2, pp: 570-582, Apr. 2014


The schematic diagram for the dc micro-grid proposal for Bangladesh

In this system, a PV-diesel hybrid concept with dc grid has been proposed where the PV panel is not placed in any central location but distributively placed on roof tops at conventional locations. The number of solar PVs placed on a roof is such that they can be connected directly to the grid. The diesel generator is needed to give support to the system during bad weather and reduce the battery storage for the system. Diesel generator is placed at a convenient location and in case of higher demand; several diesel generators could be installed at the same place as per increased load demand. Diesel generators would be connected to the grid via ac-dc converters. A battery may be placed to store the power generated from diesel generator. Each consumer is connected to the grid and is metered for the energy consumed. Schematic diagram of a dc micro grid and a typical setup inside the consumer premises is shown in Figure. A consumer will have a dc-dc converter to convert the high grid voltage to nominal 12 V and charge a battery set up individually at the premises to store energy. It may be mentioned here that the charge controller to protect the battery is built inside the converter. During the day time, solar panels will produce output to be stored in the batteries of the individual customers. The size of the batteries will be deduced as per their energy demand. The customer has two options so far the household loads are connected-he/she can use all dc loads or can use an inverter (similar to an IPS) to have 240 Vac load in his house. This option will be useful when the actual power consumption by some of the consumers (well off consumers) are high and rich enough to use household gadgets like fridge, TV etc.

Source:
Syed Enam Reza, Mou Mahmood, A. S. M Kalkobad, Ehasanul Kabir, Nahid-ur-Rahman Chowdhury, “A Novel Load Distribution Technique of DC Micro-Grid Scheme on PV-Diesel Hybrid System for Remote Areas of Bangladesh,” Int. J. Scient. & Tech. Res., vol 2, issue 1, pp: 133-137, Jan. 2013


Variable-speed wind turbine with a hydrogen storage system and a fuel-cell system that reconverts hydrogen to electrical grid

As the wind penetration increases, the hydrogen options become most economical. Also, sales of hydrogen as a vehicle fuel are more lucrative than reconverting the hydrogen back into electricity. Industry is developing low-maintenance electrolysers to produce hydrogen fuel. Because these electrolysers require a constant minimum load, wind turbines must be integrated with grid or energy systems to provide power in the absence of wind.

Electrical energy could be produced and delivered to the grid from hydrogen by a fuel cell or a hydrogen combustion generator. The fuel cell produces power through a chemical reaction, and energy is released from the hydrogen when it reacts with the oxygen in the air. Also, wind electrolysis promises to establish new synergies in energy networks. It will be possible to gradually supply domestic-natural-gas infrastructures, as reserves diminish, by feeding hydrogen from grid-remote wind farms into natural-gas pipelines. The Figure shows a variable-speed wind turbine with a hydrogen storage system and a fuel cell system to reconvert the hydrogen to the electrical grid…

Source:
Juan Manuel Carrasco, Leopoldo García Franquelo, Jan T. Bialasiewicz, Eduardo Galván, Ramón C. Portillo Guisado, Ángeles Martín Prats, José Ignacio León and Narciso Moreno-Alfonso “Power-Electronic Systems for the Grid integration of Renewable Energy Sources: A Survey”. IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, August 2006


Five-level cascaded multilevel converter connected to a multipole low-speed wind-turbine generator

The use of low-speed permanent-magnet generators that have a large number of poles allows obtaining the dc sources from the multiple wounds of this electrical machine, as can be seen in Figure. In this case, the power-electronic building block (PEBB) can be composed of a rectifier, a dc link, and an H-bridge. Another possibility is to replace the rectifier by an additional H-bridge. The continuous reduction of the cost per kilowatt of PEBBs is making the multilevel cascaded topologies to be the most commonly used by the industrial solutions. This as one alternative to multinivel conversors.

Source:
Juan Manuel Carrasco, Leopoldo García Franquelo, Jan T. Bialasiewicz, Eduardo Galván, Ramón C. Portillo Guisado, Ángeles Martín Prats, José Ignacio León and Narciso Moreno-Alfonso “Power-Electronic Systems for the Grid integration of Renewable Energy Sources: A Survey”. IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, August 2006


Two HVDC transmission solutions_Classical LCC-based system with STATCOM and VSC-based system

Classical HVDC transmission systems [as shown in Figure (a)] are based on the current source converters with naturally commutated thyristors, which are the so-called linecommutated converters (LCCs). This name originates from the fact that the applied thyristors need an ac voltage source in order to commutate and thus only can transfer power between two active ac networks. They are, therefore, less useful in connection with the wind farms as the offshore ac grid needs to be powered up prior to a possible startup. A further disadvantage of LCC-based HVDC transmission systems is the lack of the possibility to provide an independent control of the active and reactive powers. Furthermore, they produce large amounts of harmonics, which make the use of large filters inevitable. Voltage-source converter (VSC)-based HVDC transmission systems are gaining more and more attention not only for the grid connection of large offshore wind farms. Figure (b) shows the schematic of a VSC-based HVDC transmission system

Source:
Juan Manuel Carrasco, Leopoldo García Franquelo, Jan T. Bialasiewicz, Eduardo Galván, Ramón C. Portillo Guisado, Ángeles Martín Prats, José Ignacio León and Narciso Moreno-Alfonso “Power-Electronic Systems for the Grid integration of Renewable Energy Sources: A Survey”. IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, August 2006


Single doubly fed induction machine with two fully controlled ac–dc power converters

Variable-Speed Concept Utilizing Doubly Fed Induction Generator (DFIG):In a variable-speed turbine with DFIG, the converter feeds the rotor winding, while the stator winding is connected directly to the grid. This converter, thus decoupling mechanical and electrical frequencies and making variable-speed operation possible, can vary the electrical rotor frequency. This turbine cannot operate in the full range from zero to the rated speed, but the speed range is quite sufficient. This limited speed range is caused by the fact that a converter that is considerably smaller than the rated power of the machine is used. In principle, one can say that the ratio between the size of the converter and the wind-turbine rating is half of the rotor-speed span. In addition to the fact that the converter is smaller, the losses are also lower. The control possibilities of the reactive power are similar to the full power-converter system. For instance, the Spanish company Gamesa supplies this kind of variable-speed wind turbines to the market. The forced switched power-converter scheme is shown in Figure. The converter includes two three-phase ac–dc converters linked by a dc capacitor battery. This scheme allows, on one hand, a vector control of the active and reactive powers of the machine, and on the other hand, a decrease by a high percentage of the harmonic content injected into the grid by the power converter.

Source:
Juan Manuel Carrasco, Leopoldo García Franquelo, Jan T. Bialasiewicz, Eduardo Galván, Ramón C. Portillo Guisado, Ángeles Martín Prats, José Ignacio León and Narciso Moreno-Alfonso “Power-Electronic Systems for the Grid integration of Renewable Energy Sources: A Survey”. IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, August 2006


distribution demand between micosourses electrical network external and storage in a microgrid DC

Sun –> energy provided from photovoltaic energy plant.
Wind –> similar from wind turbine(s)
Batt –> similar from battery bank
ene –> similar injected from electrical network external or utility electric network

In other image in red is the total suministed for this sources and red line is the demand. Other images is cost, evoluction of energy supply from each source and more details. It is made for me (Jorge Mírez) in Matlabb/Simulink and I utilized concept of linear programming. Image is from my destokp laptop.


Example of General hybrid power system model

A simple block diagram of a hybrid power system is shown in Figure. The sources of electric power in this hybrid system consist of a diesel generator, a battery bank, a PV array, and a wind generator. The diesel generator is the main source of power around the world. The output of the diesel generator is regulated ac voltage, which supplies the load directly through the main distribution transformer. The battery bank, the PV array, and the wind turbine are interlinked through a dc bus. The RTU (Remote Terminal Unit) regulates the flow of power to and from the different units, depending on the load. The integration of a RTU into a hybrid power system is important to enhance the performance of the system. The overall purpose of the RTU is to give knowledgeable personnel the ability to monitor and control the hybrid system from an external control center. Since the hybrid systems of interest in this research are located in remote areas, the ability for external monitoring and control is of utmost importance. The RTU is interfaced with a variety of sensors and control devices located at key locations within the hybrid system. The RTU processes the data from these sensors and transmits it to a control center. In addition, the RTU is also capable of receiving control signals and adjusting parameters within the system without the physical presence of the operating personnel.

Source:
Richard W. Wies, Ron A. Johnson, Ashish N. Agrawal and Tyler J. Chubb “Simulink Model for Economic Analysis and Environmental Impacts of a PV With Diesel-Battery System for Remote Villages” IEEE Transactions on Power Systems, Vol. 20, No. 2, May 2005


General block diagram of the DC microgrid power plant

El block diagram structure of a microgrid is shown in Figure. The main task of the power plant’s power electronic converter is to fit primary energy converter’s output voltage to the microgrid power line voltage, and source operating point control as well as low and high level microgrid’s control. The converter’s structure depends on a type of primary energy converter. A common feature of the converters concerns their output current. It should be permanent and low ripple.

Source:
Piotr Biczel. “Power Electronic Converters in DC Microgrid”. IEEE 5th International Conference – Workshop, Compatibility in Power Electronics, CPE 2007. Poland.


A example of DC microgrid

Many examples there is in this blog about DC microgrids (see last post or search in blog). This blog is for share information of actual tendence in electricity. It is part of my research as doctoral student in physics in National University of Engineering in Lima, Perú; and actually I am writing in english. For last post, the blog have a traductor box option. Near to 1000 post about diferents topic in renewable energy focused in microgrid, smartgrid and its modelling ans simulation witn Matlab/Simulink. I know this software and its very good, practical for science and engineering. In May or June is possible I will expose mi thesys doctoral, previus days or weeks I posted the exact time for all people see in live or via internet. This figure is other DC microgrid scheme with different technologies interconnected at a some bus DC for transfered electric power. Jorge Mírez (please visit and link my fanpage http://www.facebook.com/jorgemirezperu  )

Source of Figure:
N. R. Rahmanov, N. M. Tabatabaei, K. Dursun, O. Z. Kerimov. “Combined AC-DC Microgrids: Case Study – Network Development and Simulation” International Journal on Technical and Physical Problems of Engineering. September 2012, Issue 12, Volume 4, Number 3, Pages 157 – 161.


 

Example of a hybrid microgrid

This a typical scheme of a microgrid AC/DC. It maybe contain many technologies as micro-source, storage, loads and monitoring and control. Un Microgrid Bus linked the different components.

Source:
N. R. Rahmanov, N. M. Tabatabaei, K. Dursun, O. Z. Kerimov. “Combined AC-DC Microgrids: Case Study – Network Development and Simulation” International Journal on Technical and Physical Problems of Engineering. September 2012, Issue 12, Volume 4, Number 3, Pages 157 – 161.


Microgrid operation of islanded operation

The figure illustrates the concept of the power management method in the islanded mode. When a DC micro-grid must be separated from the ac grid and switch to the islanded mode, the grid-tied converter released control of the DC grid voltage and one of the converters in the micro-grid must take over that control. Since each converter of DGs is used for optimal control of each source, only the converters of the energy storage elements are free to regulate the DC grid voltage. During the islanded mode, the battery plays a main role in regulating the DC grid voltage and the super-capacitor plays a secondary role in responding to the sudden power requirement as an auxiliary converter.

Source:
Ji-Heon Lee, Hyun-Jun Kim, Byung-Moon Han, Yu-Seok Jeong, Hyo-Sik Yang and Han-Ju Cha “DC Micro-Grid Operational Analysis with a Detailed Simulation Model for Distributed Generation” Journal of Power Electronics, Vol. 11, No. 3, May 2011


energy of each source accumulate

In a microgrid, each energy source is required according to the criterion of costs and production capacity. During the operation time, accumulative energy from each source is represented in the figure. Criteria of linear optimization has been used in this modelling and simulation. This allows determining the nominal capacity and the ability to respond to sudden requests. Made on Matlab of MathWorks Inc.