Archive for the ‘Intercambiador de Calor’ Category

Jorge Mírez – Servicios en Ingeniería y Educación. WebSite: http://www.geocities.ws/jorgemirez WhatsAap: (+51) 970030394 Sede: Lima, Perú (disponibilidad de ir a provincias y exterior).


Jorge Mírez Tarrillo_Publicidad-1

Anuncios

Transmisión en Vivo del Encuentro de Académicos y Profesionales Chota 2016. Hoy 28 Dic 2016. De 14 h (hora Perú) se da link YouTube


"Link de transmisión en vivo y en Directo en español del Encuentro de Académicos y Profesionales MAP Chota 2016 que se realiza hoy 28 Dic. a partir de las 14 h (hora de Perú) en el Complejo Cultural "Akunta" de la CIudad de Chota"....
Página Web: http://jmirez.wixsite.com/mapchota2016 
Fanpage: https://www.facebook.com/mapchota2016/
PD: Se invita a los que desean grabarlo, transmitirlo por radio, TV y/o cable el evento.
Link Youtube de transmisión en vivo: http://youtu.be/gJEeSJ4iNTA"
Link de transmisión en vivo y en Directo en español del Encuentro de Académicos y Profesionales MAP Chota 2016 que se realiza hoy 28 Dic. a partir de las 14 h (hora de Perú) en el Complejo Cultural “Akunta” de la CIudad de Chota”….
Página Web: http://jmirez.wixsite.com/mapchota2016
Fanpage: https://www.facebook.com/mapchota2016/
PD: Se invita a los que desean grabarlo, transmitirlo por radio, TV y/o cable el evento.

Link Transmisión en Vivo y en Directo en Español

http://youtu.be/gJEeSJ4iNTA

 

Meeting of Academics and Professionals / Encuentro de Académicos y Profesionales MAP Chota 2016. Miércoles 28 Dic 2016 (Wed, Dec 28, 2016). 14:00 h – 20:00 h. Lugar: Complejo Cultural “Akunta”. Chota, Perú.


afiche-poster-map-chota-0216 logo-horizontal-map-chota-2016 logo_2

Se invita a todos los que desean participar como Ponentes de este Encuentro. Las reglas son:

  1. Las ponencias serán de al menos 15 minutos.

  2. Hay espacio para 24 ponencias de 15 minutos.

  3. Las ponencias serán transmitidas vía internet por dos canales de YouTube (uno en español y otro en inglés con traductor en vivo).

  4. Los ponentes enviarán hasta el 21 de diciembre sus ponencias y CV para ser colocados en el Programa del evento.

  5. El modelo del CV en formato Word está disponible en el siguiente link: https://jmirez.files.wordpress.com/2016/12/map-chota-2016_nombreyapellidoponente_cv.docx

  6. El modelo de la presentación en formato PPT está disponible en: https://jmirez.files.wordpress.com/2016/12/ppt_mar-chota-2016_autor.pptx

  7. Los archivo PPT y Word enviarlo a jmirez@uni.edu.pe


Motivación del Encuentro

Las fiestas de fin de año reúnen a la familia y amigos, para lo cual se da el retorno de estudiantes, académicos y profesionales desde sus centros de estudio, investigación y de trabajo a sus ciudades de origen (en los diferentes ciudades y pueblos a nivel nacional)  a pasarla en familia, con las amistades o simplemente es un tiempo de retorno a nuestros lugares de origen.

Este es un motivo especial para reunirnos para conocernos y compartir lo realizado durante el año mediante la conversación y ponencias tanto en lo académico y en las experiencias profesionales sean éstas realizadas en el sector público como privado.

Chota, la Atenas del Norte del Perú, se viste de gala al organizar el MAP Chota 2016 e invita a ser parte de este encuentro entre estudiantes de escuelas, colegios, pregrado y postgrado, académicos, profesores, padres de familia, investigadores, profesionales, organizaciones de base y sociedad en general  de fin de año 2016 y hacemos el llamado a todas las ciudades del Perú a que se realicen eventos similares, y hacemos extensivo también a todos los pueblos y ciudades de América Latina.

Durante el MAP Chota 2016 estamos organizando algunas actividades extras: como un compartir; feria tecnológica, artesanal y artística; exposición de fotografías y de libros.

Las seis horas que durará el evento quedará guardado en YouTube y la participación en el evento como Ponente o Asistente es totalmente libre y gratuito. Quedan todos invitados a participar.

Página Web del Encuentro http://jmirez.wixsite.com/mapchota2016

Conferencia “Motivación en Ingeniería Mecánica Eléctrica, Biomédica y Espacial”. Ciclo de Charlas de Motivación – Lugar Polideportivo Colegio Nacional San Juan de Chota, Chota – Perú. Lunes 20 Junio 2016 – 9 am. Organiza: Promoción Bodas de Plata 1987-1991 “Horacio Zeballos Gamez” – CN San Juan de Chota (in spanish)

Para algún día ser Premios Nóbel, seis ingredientes fundamentales: mucha curiosidad, una educación de base sólida, un buen mentor, un lugar donde se esté desarrollando ciencia de buen nivel y, sobre todo, una forma de pensar poco convencional


condiciones_para_obtener_premio_nobel

“El Dr. Norrby comentó a los estudiantes de nuestro campus que para algún día ser Premios Nobel, no deben olvidar seis ingredientes fundamentales: mucha curiosidad por explicar ciertos fenómenos, una educación de base sólida, un buen mentor [alguien que te clarifique el camino y esté al tanto de lo que sucede en el mundo, de la importancia de tal o cual investigación en beneficio de la humanidad… tan importante es tener un buen mentor], un lugar donde se esté desarrollando ciencia de buen nivel,  experimentos fuera de serie que rompan paradigmas en una rama que los intrigue y, sobre todo, una forma de pensar poco convencional”.

Estimados (gentlement) lo comparto porque lo veo importante… muy importante lo diría si uno se fija en lo que sugiere el entrevistado y la realidad universitaria.

Fuente: http://www2.ccm.itesm.mx/sites/ccm.itesm.mx.talentotec/files/historico/talentotec055.pdf

 

now I am member of Technical Program Committee de 2015 ISGT-LA Conference on Innovative Smart Grid Technolgies. Octuber 5-6-7, 2015. Montevideo – Uruguay.


now i am member of Technical Program Committee de 2015 ISGT-LA Conference on Innovative Smart Grid Technolgies. Octuber 5-6-7, 2015. Montevideo – Uruguay.

Please visit

http://www.isgtla.org/Programcommittee.html

The Web Site of 2015 ISGT-LA Conference

http://www.isgtla.org


sistemas_de_conversion_activos_de_energia_solar

En la figura se muestran los sistemas activos de conversión de la energía solar en electricidad o en energía térmica. Las temperaturas de referencia se muestran en la figura. Considerando que actualmente existen mejoras tecnológicas las cuales progresivamente resultan en productos de mayor eficiencia, es éste un tema muy importante a la investigación, tanto de soluciones generales y locales.


The information related to this post for sale for US $ 10.00. You can make payments through PayPal account: jorgemirez2002@gmail.com or send an e-mail to receive PayPal invoice and make your payment quickly and easily. Tell us (through e-mail) the name of the input or inputs that interests you. // La información relacionada con este post en venta por US $ 10.00. Usted puede hacer pagos a través de cuenta PayPal: jorgemirez2002@gmail.com o enviar un e-mail para recibir la factura de PayPal y hacer su pago de forma rápida y sencilla. Díganos (por medio de email) el nombre de la entrada o entradas que le interese.


curso_central_solar_cilindro_parabolico


efficiency_CSCP

Hola a todos, en anterior post había colocado la presentación que hice sobre CSCP, sin embargo, entre las preguntas del auditorio una fue sobre la eficiencia de la instalación. Algo que fue rápido para mi ajustar el código y el diagrama de flujo para obtenerlo y que os presento en esta entrada. Recuerden que el período de simulación es de 24 horas indicado en el eje horizontal de la figura. Se observa que a cuando amanece la eficiencia se eleva rápidamente hasta alcanzar un valor estable y luego éste decae durante el ocaso del Sol al atardecer. Lo que más me sorprende es que a comparación de la curva de irradiación solar, la curva de la eficiencia es más plana durante mas horas a pesar de los valores de irradiación solar tienen forma de curva gaussiana.

La eficiencia es algo más de 71% y considero que se puede hacer un mejor cálculo si tuviera datos más exactos del entorno de la instalación y también de la utilización del flujo másico caliente de sal fundida (almacenamiento térmico, uso para la producción de calor-electricidad en ciclos Rankine, etc?). Podemos colaborar con colegas de las universidades, recuerden que estoy en Perú y un poco de colaboración extranjera es lo más adecuado para llevar investigación y propuestas al mercado eléctrico con mayor fundamento.

Casos semejantes como los campos de heliostatos con torre central (caldera central) y los motores Stirling tienen parecido principio, así que éste cálculo es un buen inicio en dicha temática. Favor si alguien está interesado me escribe que por conocer el mundo estoy muy apto a ello y aprender cada día más.


The information related to this post for sale for US $ 500.00. You can make payments through PayPal account: jorgemirez2002@gmail.com or send an e-mail to receive PayPal invoice and make your payment quickly and easily. Tell us (through e-mail) the name of the input or inputs that interests you. // La información relacionada con este post en venta por US $ 500.00. Usted puede hacer pagos a través de cuenta PayPal: jorgemirez2002@gmail.com o enviar un e-mail para recibir la factura de PayPal y hacer su pago de forma rápida y sencilla. Díganos (por medio de email) el nombre de la entrada o entradas que le interese.

 


masa_util_en_CSCP

Primero doy gracias a todos quienes son participes presentes o la distancia del trabajo que realizo y que la presente lo comparto, es para engrandecerles a todos los actores que en mi vida han sido partícipes. Nuevamente presento otra parte del modelo del CSCP mostrado en la entrada anterior (J594), en ello ya muestro dos cosas: la cantidad de masa que sale caliente (a alta temperatura) del CSCP para uso en sistema de generación de vapor o para calefacción y las pérdidas por convección entre el vidrio del absorbedor y el medio ambiente.

La masa útil se muestra en la izquierda superior la cantidad de kg/s que salen calientes del CSCP, dado que se fija la temperatura de entrada y de salida, es la masa la cantidad a calcular y simular. Como se ve a medida que el sol irradia durante el dia se llega a un pico hacia el mediodia. No hay valores negativos y se ha configurado de tal manera que sólo sean condiciones iguales o mayores a cero a mostrar, que es un acercamiento a lo real.

En tanto a las pérdidas por tener el absorbedor que contiene al fluido a calentar y caliente, éste interactúa con el medio ambiente, las pérdidas de calor son por convección natural, la convección forzada es posible con algunas modificaciones. La irradiación solar directa es reflejada por los espejos y caen sobre el absorbedor el cual contiene una configuración especial para evitar las pérdidas por convección y radiación y permitir la mayor cantidad de transferencia hacia el fluido operante (por lo común una sal fundida). Sin embargo, las pérdidas se producen y se tienen que calcular.

Simulado en Matlab/Simulink, un excelente herramienta para la gente que trabaja en ciencias e ingeniería. Las condiciones locales de una aplicación en especial lo puedo realizar, además de asesorar también las tesis o proyectos de investigación en modelamiento y simulación… esto es muy interesante.


The information related to this post for sale for US $ 300.00. You can make payments through PayPal account: jorgemirez2002@gmail.com or send an e-mail to receive PayPal invoice and make your payment quickly and easily. Tell us (through e-mail) the name of the input or inputs that interests you. // La información relacionada con este post en venta por US $ 300.00. Usted puede hacer pagos a través de cuenta PayPal: jorgemirez2002@gmail.com o enviar un e-mail para recibir la factura de PayPal y hacer su pago de forma rápida y sencilla. Díganos (por medio de email) el nombre de la entrada o entradas que le interese.


calor_util_en_CSCP

 

En esta oportunidad deseo presentar un parte del diagrama en Simulink y resultados de una simulación sobre un CSCP.

La gráfica izquierda superior representa el calor útil almacenado en el fluido operante, luego de haber sido reducido por varias pérdidas ópticas, geométricas entre otras. El valor negativo es una cantidad de energía que se gasta en calentar el fluido desde un punto de arranque frío (es decir, durante el alba).

La gráfica izquierda inferior se visualiza la radiación solar de un día completo (24 horas). Se ha agregado para que las pérdidas se computen a partir de la salida del sol.

Los colores significan diferente función del dato dentro del programa: entradas, procesos, salidas. Los datos indicados ahí son generales los cuales pueden ser ajustados para cada aplicación en especial. La situación del modelo es que es principalmente por convección natural la interacción del CSCP con el medio ambiente, para casos de viento se puede adicionar pequeñas correcciones.

Os lo comparto y espero sea de su utilidad. El modelo ha sido realizado 100% por el autor del blog guiándome del trabajo de tesis de una universidad española. El modelo se puede mejorar (obvio) y permitir el cálculo de muchos más parámetros técnicos y económicos.


The information related to this post for sale for US $ 250.00. You can make payments through PayPal account: jorgemirez2002@gmail.com or send an e-mail to receive PayPal invoice and make your payment quickly and easily. Tell us (through e-mail) the name of the input or inputs that interests you. // La información relacionada con este post en venta por US $ 250.00. Usted puede hacer pagos a través de cuenta PayPal: jorgemirez2002@gmail.com o enviar un e-mail para recibir la factura de PayPal y hacer su pago de forma rápida y sencilla. Díganos (por medio de email) el nombre de la entrada o entradas que le interese.


componentes_radiacion_solar

Al atravesar la atmósfera, la radiación solar va a ser transmitida, absorbida e incluso reflejada por el efecto del vapor de agua, las nubes, el ozono y los aerosoles que existen en las distintas capas de la atmósfera, fenómeno que se conoce como scattering.

De estas complejas interacciones de la atmósfera terrestre con la radiación solar resultan las componentes que se definen a continuación:

Radiación Solar Directa: es la radiación solar que recibe la Tierra sin sufrir ninguna dispersión atmosférica.

Radiación Solar Difusa:es la radiación solar que llega a la superficie de la Tierra después de ser reflejada. No tiene una dirección priviligeada y se debe a la interacción de los distintos factores atmosféricos anteriormente citados (nubes, partículas de polvo, vapor de agua, moléculas de CO2, oxígeno, ozono, etc.). Algunas autores descomponen la radiación difusa a su vez, en la suma de la radiación difusa isotrópica, circumsolar y de horizonte.

Radiación Solar Reflejada (de albedo): es la radiación solar que procede de la reflexión de la superficie terrestre (suelos, edificios, etc.).

Radiación Solar Global: es la suma de la radiación solar directa y la radiación solar difusa. Algunos autores añaden como un tercer sumando, la radiación reflejada o albedo. Otros incorporan el valor de ésta a la definición de radiación difusa. Depende fundamentalmente de si lo que se quiere evaluar es la radiación solar total que se recibe del sol, o la que es aprovechable en la superficie.

En particular, para las tecnologías de concentración, sólo resulta aprovechable la radiación solar directa, puesto que sólo es posible concentrar en un foco aquella radiación cuya dirección es conocida.


The information related to this post for sale for US $ 10.00. You can make payments through PayPal account: jorgemirez2002@gmail.com or send an e-mail to receive PayPal invoice and make your payment quickly and easily. Tell us (through e-mail) the name of the input or inputs that interests you. // La información relacionada con este post en venta por US $ 10.00. Usted puede hacer pagos a través de cuenta PayPal: jorgemirez2002@gmail.com o enviar un e-mail para recibir la factura de PayPal y hacer su pago de forma rápida y sencilla. Díganos (por medio de email) el nombre de la entrada o entradas que le interese.


aletas

Las aletas son utilizados para evacuar calor hacia el medio exterior a un sistema que se desea por lo general enfriar. Existe una ecuación para determinar la distribución de temperaturas a través de una aleta bajo coordenadas cartesianas (amén de todas coordinadas cilíndricas y esféricas). Las geometrías pueden ser variadas entre las más utilizadas esta la forma rectangular y triangular. Para geometrías más complicadas las soluciones analíticas son complicadas y requieren demasiado tiempo y un buen conocimiento de matemáticas. Para palear ello haciendo uso del arte de la programación, se puede programar la misma ecuación diferencial (como se muestra en la figura) y encontrar los perfiles de distribución de temperatura para las diferentes formas de aletas que uno puede imaginar.

El modelo a considerar es que a lo largo de la extensión de la aleta se debe programar la dependencia del perímetro y del área como varía. Simulaciones más precisas pueden ver la dependencia de la conductividad y el coeficiente de transferencia de calor por convección. Pero estos detalles requerirán una capacidad computacional mayor, lo que se muestra es un modelo  simple de aleta y que trato de describir mas que todo la curva de temperatura obtenida


The information related to this post for sale for US $ 50.00. You can make payments through PayPal account: jorgemirez2002@gmail.com or send an e-mail to receive PayPal invoice and make your payment quickly and easily. Tell us (through e-mail) the name of the input or inputs that interests you. // La información relacionada con este post en venta por US $ 50.00. Usted puede hacer pagos a través de cuenta PayPal: jorgemirez2002@gmail.com o enviar un e-mail para recibir la factura de PayPal y hacer su pago de forma rápida y sencilla. Díganos (por medio de email) el nombre de la entrada o entradas que le interese.


santa_rita_1

santa_rita_2

Este proyecto ha sido desarrollado en los Estados Unidos de América. En las figuras pueden apreciar la configuración y las potencias involucradas. Esta es una instalación penintenciaria (cárcel). Implementaron técnicas de control de voltaje y frecuencia. Así como también el tema de predicción de la energía consumida, almacenada, etc. La sincronización y la interconexión con la red externa también. Han desarrollado un protocolo que mencionan es una poderosa herramienta para simplificar la integración de los recursos de generación distibuidos, es decir, ya tienen avanzando algo que luego podría ser comercialmente impuesto.

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

This type of implementation have software and hardware development and in advanced prototype. They are prepared to novel electric market in specific applications. It is good, but is need improve continually and research many topics in microgrid and smartgrid.


The information related to this post for sale for US $ 10.00. You can make payments through PayPal account: jorgemirez2002@gmail.com or send an e-mail to receive PayPal invoice and make your payment quickly and easily. Tell us (through e-mail) the name of the input or inputs that interests you. // La información relacionada con este post en venta por US $ 10.00. Usted puede hacer pagos a través de cuenta PayPal: jorgemirez2002@gmail.com o enviar un e-mail para recibir la factura de PayPal y hacer su pago de forma rápida y sencilla. Díganos (por medio de email) el nombre de la entrada o entradas que le interese.


ejemplo_desplazamiento

Determinar los esfuerzos mecánicos en una pieza es de vital importancia en el diseño mecánico. También lo es determinar cuando es el desplazamiento o deformación que puede tener una pieza. Esto se puede simular dentro de las limitaciones del caso en Matlab/Simulink.

La llave de boca que se muestra en la figura al cual se ha sometido a una fuerza en el mango y se observa la deformación del caso y un mapa de los esfuerzos presentes. Ecuaciones en derivadas parciales utiliza MathWorks en su producto Matlab/Simulink para hacer todo esto posible y vaya que si da un buen resultado.

El modelo es un ejemplo sencillo, pero tomándose a gusto tiempo y dedicación, se puede lograr modelos más complicados de piezas. Se debe tener cuidado en tener capacidad computacional para ello. Es una alternativa a otros softwares complicados y costosos, al menos da un entendimiento de lo que sucede, esto puede servir para empresas que están comenzando en determinar con más precisión lo que sucede en las piezas de sus equipos, máquinas o diseños…. o también para las empresas grandes.


The information related to this post for sale for US $ 40.00. You can make payments through PayPal account: jorgemirez2002@gmail.com or send an e-mail to receive PayPal invoice and make your payment quickly and easily. Tell us (through e-mail) the name of the input or inputs that interests you. // La información relacionada con este post en venta por US $ 40.00. Usted puede hacer pagos a través de cuenta PayPal: jorgemirez2002@gmail.com o enviar un e-mail para recibir la factura de PayPal y hacer su pago de forma rápida y sencilla. Díganos (por medio de email) el nombre de la entrada o entradas que le interese.


Este tema si que estuvo muy pero muy interesante, no sólo porque tenía que ser con el Almacenamiento de Energía Térmica (TES), sino de estudiar bien las empresas con productos en el mercado. Me interesó mucho los productos que usan material de cambio de fase (PCM), tecnología del tipo almacenamiento térmico por calor latente por cambio de fase. No sólo eso, sino de abarcar el mercado peruano de solar térmica. A todo esto me pidieron hacer un breve benchmarking de las instituciones de R&D y de las empresas con productos comerciales relacionados a nivel mundial, juntanto todo esto y comparando con lo que se tiene en Perú, hago un breve listado de oportunidades en Péru netamente del almacenamiento térmico en conjución con Solar, Eólica y Biomasa. Si algo me olvidé considerar, pues lo podemos mejorar el trabajo. El pdf de la presentación me reservo publicarlo… favor comprensión, salvo mejor opinión.

Diapositiva1

Diapositiva2

Diapositiva3

Diapositiva4

Diapositiva5

Diapositiva6

Diapositiva7

Diapositiva8

Diapositiva9

Diapositiva10

Diapositiva11

Diapositiva12

Diapositiva13

Diapositiva14

Diapositiva15

Diapositiva16

Diapositiva17

Diapositiva18

Diapositiva19

Diapositiva20

Diapositiva21

Diapositiva22

 

Diapositiva23

Diapositiva24

Diapositiva25

Diapositiva26

Diapositiva27

Diapositiva28

Diapositiva29

Diapositiva30

Diapositiva31

Diapositiva32

Diapositiva33

Diapositiva34


 

Los sistemas solares de concentración están adquiriendo cada vez mas fuerza como tecnologías para la producción de energía eléctrica. Prueba de ello, son los más de 2000 MWe que figuran como inscritos provisionalmente en el Registro de Instalaciones de Producción de Energía Eléctrica en el Régimen Especial, en España. En la figura que aparece a continuación se muestran los proyectos, en fase de explotación, ejecución o promoción, en mayo de 2007.

De todos los proyectos que se muestran en la figura, la mayor parte, a excepción de las plantas PS10 y PS20, se refieren a centrales termosolares de colectores cilindro parabólicos. Todas ellas utilizan aceite como fluido calorífero en el campo solar, tecnología que se denomina Heat Transfer Fluid, pues se caracteriza porque el fluido de trabajo en el campo solar no es igual al fluido del ciclo de potencia (en general, aguavapor), por lo que precisan de un intercambiador de calor  intermedio. Esta tecnología ha sido la que se ha utilizado hasta el momento en plantas comerciales, desde las primeras plantas instaladas en California durante la década de los ochenta, hasta ahora.

Frente a esta tecnología convencional, la generación directa de vapor en colectores cilindro parabólicos (proceso GDV) se presenta como una opción muy atractiva para reducir el coste de la electricidad generada utilizando estos sistemas de concentración solar. Mediante esta tecnología se aumenta el rendimiento anual de la planta debido, entre otros factores, a la eliminación de las pérdidas de calor asociadas a los intercambiadores de calor intermedios entre el campo solar y el bloque de potencia, necesarios en caso de que el fluido calorífero del campo solar no coincida con el fluido de trabajo del ciclo de potencia. Además, se reducen los costes del sistema solar, ya que la mayor inversión en tuberías que aguanten las presiones óptimas de trabajo del vapor queda compensada por el ahorro en otros sistemas específicos del uso de aceites, sales u otros fluidos de trabajo en el campo solar: cambiadores de calor, sistemas anti-incendios, tanques de
expansión, sistemas calefactores para el tanque de almacenamiento, etc.

Esta tecnología se ha probado con éxito en el proyecto DISS, donde actualmente se produce vapor sobrecalentado a 100 bar en los tubos receptores de los colectores LS-3. A partir de este proyecto, se han puesto en marcha dos proyectos para la construcción de centrales termosolares empleando esta tecnología en España. El primer proyecto, Almería GDV, pretende construir una central de 3 MWe en la Plataforma Solar de Almería. El segundo proyecto, Real DISS, tiene por objetivo final la construcción de una central de 50 MWe en Carboneras, aunque como paso previo, se quiere ensayar un lazo de pruebas con componentes mejorados, también en Almería.

La elaboración de componentes mejorados para la generación directa de vapor en colectores cilindro parabólicos es uno de los aspectos clave para el desarrollo de esta tecnología. Se espera que en breve se puedan comercializar tubos absorbedores para trabajar a más alta temperatura y presión (525 ºC y110 bar). De esta forma quedaría todavía más patente las ventajas del vapor frente al aceite sintético, ya que la temperatura límite de operación de este último es 400 ºC; por encima de dicha temperatura, el aceite se degrada. Con los tubos absorbedores actuales, esta limitación no supone un inconveniente propiamente, ya que la superficie selectiva del tubo absorbedor limita también la temperatura a estos valores. Otro sistema clave para el despliegue de la generación directa de vapor en colectores cilindro parabólicos es el sistema de almacenamiento térmico, pues hasta el momento no se ha desarrollado ningún sistema eficiente para la generación directa de vapor. Dentro del proyecto Real DISS se quiere probar un sistema de almacenamiento basado en módulos especialmente adaptados a cada una de las secciones del proceso de generación directa de vapor: precalentamiento, evaporación y sobrecalentamiento.


El EES (Electric Energy Storage) usa formas de energía tales como la energía química, cinética o potencial para almacenar energía que después será convertida en electricidad. Tal almacenamiento puede proveer tres servicios básicos: suministra electricidad en horas punta usando electricidad almacenada durante períodos de baja demanda, balancear el suministro de electricidad y las fluctuaciones de la demanda sobre un período de segundos y minutos, y posponer ampliaciones de la capacidad de la red eléctrica.

La capacidad global de las EES hacia 2009 es de 90 GW [1], el cual es solo 3% de la capacidad de producción de energía eléctrica debido a los altos costos de capital de las EES comparadas a las plantas de energía de gas natural, el cual puede proveer servicios similares, y las barreras regulatorias para entrar en el mercado eléctrico. De la capacidad global, 22 GW de EES está en los Estados Unidos (2.5% de la capacidad de generación eléctrica).

Las EES pueden potencialmente suavizar la variabilidad en el flujo de potencia desde la generación renovable y almacenar energía renovable, de modo que la generación renovable puede ser programado para proveer cantidades específicas de potencia, el cual puede reducir los costos de la integración de las energías renovables con la red de electricidad, incrementando la penetración de las energías renovables e inducir la reducción de GHG (Greenhouse Gas Emission).

Hay dos formas muy diferentes de TES: TES aplicable a las plantas de energía solar térmica y  TES de fin de uso (end-use). TES para plantas de energía solar térmica consiste de un aceite sintético o sal fundida que almacena energía solar en la forma de un colector de calor para plantas de energía solar térmica para permitir suavizar la salida de potencia durante horas del día nublados y extender la producción de energía por 1 a 10 horas pasado la puesta del sol. Los TES de fin de uso, almacena electricidad desde períodos fuera de pico a través del uso de almacenamiento frío o caliente en acuíferos subterráneos, agua o tanques de hielo u otros materiales y usa esta energía almacenada para reducir el consumo de electricidad para calefacción de edificios o sistemas de aire acondicionado durante las horas picos de demanda.

[1] Pew Center on Global Climate Change. “Electric Energy Storage”. Mayo 2009.

Una de las tecnologías más desarrolladas para el tratamiento de los residuos sólidos urbanos es la incineración mediante hornos de parrillas rotatorias, la cual es una de las tecnologías más avanzadas, desarrolladas e implementadas a nivel mundial.

En la figura se observa las diferentes etapas a través de la planta, así como la recolección de cenizas y los tratamientos de los gases de escape, en ambos casos, para hacer de toda esta instalación compatible con el medio ambiente, es decir, que se elimine en lo posible todos los elementos nocivos que causarían daño al medio ambiente.

La caldera debido a su alta capacidad de incineración tiene todo lo que es de una caldera compleja como son los recuperadores, etapa de sobrecalentamiento, etc… sin embargo, se dispone de información tanto en papers como en tesis de instalaciones de menor capacidad, en donde, se da a saber la forma de como calcularlo y dimensionarlo, es más, hay empresas que ya lo venden en paquete, es decir, que solo basta decir que tengo tanta de producción de residuos al día y un estudio de cómo están compuestos para que se dé un dimensionamiento de una planta de incineración de éste tipo.

Espero que os sirva y obviamente cada parte de esta instalación se puede simular en Matlab/Simulink asi como casos muy especiales y detallados de procesos de transferencia de calor, sistemas eléctricos, control, etc… best regards.


La incineración utiliza la descomposición térmica mediante el proceso de oxidación a alta temperatura (800 – 1100°C) y como consecuencia destruye la fracción orgánica del residuo y se reduce el volumen. Este método debe cumplir criterios de funcionamiento y operación;  es decir, una alta eficiencia de combustión, destrucción y remosión de gases tóxicos, un límite permisible en la emisión de partículas, un monitoreo semicontinuo en el proceso, una temperatura mínima específica así como niveles aceptables de tiempo de residencia de los gases generados en el combustor.  Diversas tecnologías de incineración se han desarrollado para diferentes tipos y formas físicas de residuos destacándose diseños de inyección líquida, hornos rotatorios, hornos fijos y lechos fluidizados. Los combustores de lecho fluidizado representan una de las tecnologías más prometedoras para la incineración de residuos orgánicos, plásticos, lodos contaminados y biomasa.

La combustión debe ser controlada para reducir las emisiones a la atmósfera, por lo que se ha estudiado la correlación entre la temperatura, el tiempo de residencia y el grado de emisión. En la operación de una planta piloto de lechos fluidizados, los investigadores Saxena & Jotshi (1994) registraron emisiones de SOx entre 20 y 35 ppm, de NOx entre 100 y 139 ppm, así como porcentajes de oxígeno en la corriente de gas de 13.4 y 16.1 %. Swithenbank (1997) encontraron que un incinerador de residuos clínicos, la concentración de oxígeno fue de 16.9 % en la corriente de salida del gas. Por otro lado, Hasfelriis (1987) y Wang (1993) han registrado que ciertas condiciones de operación minimizan la formación de CO y reducen la emisión de dioxinas y furanos. Wiley (1987) sugirió un nivel de oxígeno de 1 a 2 % en volumen como mínimo, involucrando un incremento de 5 a 10% de exceso de aire al sistema, para alcanzar la oxidación óptima del combustible y evitar la formación de monóxido de carbono (CO).

La generación excesiva de RSM acorta cada vez más la vida útil de los rellenos sanitarios y sitios de disposición final; por ello, es necesario evaluar e implementar alternativas de tratamiento que no sólo disminuyan el volumen y área sino que puedan ofrecer beneficios económicos y energéticos como lo ofrecen los lechos fluidizados, los cuales son altamente factibles.