Archive for the ‘Intercambiador de Calor’ Category


La incineración utiliza la descomposición térmica mediante el proceso de oxidación a alta temperatura (800 – 1100°C) y como consecuencia destruye la fracción orgánica del residuo y se reduce el volumen. Este método debe cumplir criterios de funcionamiento y operación;  es decir, una alta eficiencia de combustión, destrucción y remosión de gases tóxicos, un límite permisible en la emisión de partículas, un monitoreo semicontinuo en el proceso, una temperatura mínima específica así como niveles aceptables de tiempo de residencia de los gases generados en el combustor.  Diversas tecnologías de incineración se han desarrollado para diferentes tipos y formas físicas de residuos destacándose diseños de inyección líquida, hornos rotatorios, hornos fijos y lechos fluidizados. Los combustores de lecho fluidizado representan una de las tecnologías más prometedoras para la incineración de residuos orgánicos, plásticos, lodos contaminados y biomasa.

La combustión debe ser controlada para reducir las emisiones a la atmósfera, por lo que se ha estudiado la correlación entre la temperatura, el tiempo de residencia y el grado de emisión. En la operación de una planta piloto de lechos fluidizados, los investigadores Saxena & Jotshi (1994) registraron emisiones de SOx entre 20 y 35 ppm, de NOx entre 100 y 139 ppm, así como porcentajes de oxígeno en la corriente de gas de 13.4 y 16.1 %. Swithenbank (1997) encontraron que un incinerador de residuos clínicos, la concentración de oxígeno fue de 16.9 % en la corriente de salida del gas. Por otro lado, Hasfelriis (1987) y Wang (1993) han registrado que ciertas condiciones de operación minimizan la formación de CO y reducen la emisión de dioxinas y furanos. Wiley (1987) sugirió un nivel de oxígeno de 1 a 2 % en volumen como mínimo, involucrando un incremento de 5 a 10% de exceso de aire al sistema, para alcanzar la oxidación óptima del combustible y evitar la formación de monóxido de carbono (CO).

La generación excesiva de RSM acorta cada vez más la vida útil de los rellenos sanitarios y sitios de disposición final; por ello, es necesario evaluar e implementar alternativas de tratamiento que no sólo disminuyan el volumen y área sino que puedan ofrecer beneficios económicos y energéticos como lo ofrecen los lechos fluidizados, los cuales son altamente factibles.

Anuncios

Entre los factores ambientales de importancia vital para el funcionamiento de los digestores figuran: la temperatura, la concentoración de sólidos, la concentración de ácidos volátiles, la formación de espuma, la concentración de nutrientes esenciales, las substancias tóxicas y el pH.

Las metanobacterias sólo podrán desarrollarse cuando está tan avanzada la fermentación de los substratos primarios como almidón, celulosa o péptidos por acción de las bacterias anaerobias facultativas (por ejemplo Escherichia, Enterobacter, Klebsiella o Bacillus spp.), que se haya consumido todo el oxígeno disuelto, de manera que el potencial redoz se sitúe en un valor suficientemente bajo, menor que -200 mV. Además, el pH no debe disminuir demasiado debido a los ácidos como el acético o el butírico producidos por los Clostridium, para no inhibir el crecimiento de los metanógenos sensibles.

Comúnmente la concentración de ácidos grasos volátiles no supera los 2 – 3 g/L, expresados como ácido acético. Si se sobrepasa este nivel, la formación de metano puede disminuir mientras que continúa la producción ácida y, la digestión cesará en dos o tres días debido a que los metanógenos no pueden utilizar los ácidos a la misma velocidad con que se producen. El pH óptimo para la digestión está entre 7.0 y 7.2, aunque el rango satisfactorio va de 6.6 a 7.6. La digestión comienza a inhibirse a pH 6.5.

Una vez que se ha estabilizado un digestor el lodo está bien amortiguado, es decir, la concentración de protones no varía aún cuando se añaden cantidades relativamente grandes de ácido o álcali. Si esta capacidad de amortiguación se destruye y el pH disminuye, el digestor se “agria” o sea emite olores ácidos desagradables y cesa la metanogénesis. El CO2 es soluble en agua y reacciona con los iones hidróxilo para formar bicarbonato. La concentración de HCO3 es afectada por la temperatura, el pH y la presencia de otros materiales en la fase líquida y las condiciones que favorecen su producción a su vez aumentan el porcentaje de metano en la fase gaseosa.

La gama de temperatura para la digestión anaeróbica varía entre 10 y 60°C. Sin embargo las dos zonas óptimas son la mesófila (30 – 40 °C) y la termófila (45 – 60°C). Casi todos los digestores funcionan dentro de los límites de temperaturas mesofílicas y la diegstión óptima se obtiene a unos 35°C. La velocidad de digestión a temperaturas superiores a 45°C es mayor que a temperaturas más bajas. Sin embargo, dentro de esta gama de temperaturas, las bacterias son sumamente sensibles a los cambios ambientales y el mantenimiento de estas temperaturas elevadas resulta costoso y a veces diíficil.

Por ejemplo, en un digestor donde los residuos permanecen 12 días, la producción de gas por unidad de sólidos volátiles totales añadidos diariamente es 20% mayor a 45°C que a 35°C. La digestión no sufre por un aumento de temperatura de unos cuantos grados. Pero una disminución repentina de sólo unos pocos grados puede detener la producción de metano sin afectar a las bacterias productoras de ácidos y esto conduce a una acumulación excesiva de ácidos provocando la falla del digestor.

En los climas cálidos, donde no existen temperaturas de congelación, los digestores pueden funcionar sin añadir calor pero hay que aumentar en cambio el tiempo de retención de los residuos en el digestor. La regulación de la temperatura puede lograrse haciendo circular agua caliente a través del contenido del tanque. La regulación de la temperatura en los digestores grandes por medio de termointercambiadores exige un equipo bueno y seguro y un mantenimiento continuo.

Las causas principales de una excesiva producción de ácidos volátiles son la elevada velocidad de carga, una baja temperatura y la formación de espuma. Ésta constituye una zona que favorece a los acetógenos. La sedimentación de los materiales fibrosos y la espuma se puede evitar mezclando el contenido del digestor, lo que también contribuye al proceso ya que establece condiciones uniformes.

La presencia de substancias tóxicas puede impedir el desarrollo bacteriano. Los antibióticos empleados en las explotaciones pecuarias llegan a los excrementos pero, como ocurre también con los antihelmínticos, no suelen afectar mayormente la digestión debido a la dilución con materiales no tóxicos. Las concentraciones de nitrógeno amoniacal deben ser inferiores a 1.5 g/L. Si bien es un amortiguador, su aumento puede llegar a impedir el proceso. También resultan tóxicas las sales de zinc, níquel y cobre, aunque este último puede ser necesario en ínfimas cantidades. Las sales de los elementos alcalinos y alcalino-térreos pueden ser estimulantes o inhibitorias según la concentración. Para una digestión óptima, todos los elementos esenciales en el metabolismo microbiano tienen que estar presenes en forma fácil de asimilar por las bacterias.


En la entrada anterior se había considerado el siguiente sistema de microturbina de gas conformado por una microturbina, un generador y un sistema de control:

Pues en la presente entrada me voy a central en la microturbina. Estas se construyen de pequeña y mediana potencia con la finalidad de aprovechar combustibles de no tan alto poder calorífico y que sirven como fuentes de potencia localizadas cerca o al interior del espacio geográfico perteneciente al usuario o cliente del sistema eléctrico.

La figura es un modelo de bloques de funciones de transferencia para la turbina sin un droop. Es similar a las más comúnmente usadas modelos de turbinas de gas dinámicas (acá tengo que investigar algo más). El modelo usado es limitado para una dinámica baja. Por tal propósito es razonable asumir que el sistema opera bajo condiciones normales, y por lo tanto lo que son dinámica rápidas tales como arranques, paradas de emergecia, fallas internas o pérdidas de potencia pueden ser despreciadas.

El modelo es basado asumiendo que el control de temperatura y control de aceleración no tienen impacto sobre las condiciones normales de funcionamiento y así pueden ser omitidos del modelo. La microturbina de gas no usa un governador, el cuano no es incluido en el modelo. El recuperador es también no incluido en el modelo, pero hay que recalcar, que el recuperador predominantemente incrementa la eficiencia del sistema.

Por mi parte, he colocado entradas de prueba como funciones cuadráticas, esto para probar el modelo, corregir errores, pero es posible que con datos de entradas de alguna base de datos se tendría resultados a comparar.

 


Es imprescindible la realización de estudios de composición y caracterización de los residuos urbanos si se piensa en la aplicación de un sistema determinado de tratamiento, independientemente de los que deban realizarse en orden cuantitativo.

El conocimiento de la composición de los residuos sólidos ha tenido una importancia creciente, concretamente con el desarrollo de los diferentes procesos de valorización.

Al igual que ocurría en la producción de estos residuos, existen diversos factores que tienen una influencia importante en la composición y características de los mismos, tales como:

  • Características de la población: zona industrial, zona urbana, etc.
  • Clima y estación del año: Se recogen más desechos de frutas y legumbres en verano y más cenizas en invierno.
  • Nivel de vida de la población: La utilización de productos alimentarios preparados lleva consigo el crecimiento de embalajes de todo tipo, como plásticos, papeles, cartones, vidrios, latas de conserva, etc. y una disminución de los desechos alimentarios (verduras, carnes, etc..).

Los RU (residuos urbanos) son escencialmente heterogéneos, se hace necesario por tanto definir una composición, es decir, reagrupar lso constituyentes en categorías que presenten una cierta homogeneidad. El número de estas categorías depende del objetivo que se persiga. Pueden adaptarse distintas clasificaciones, una sencilla sería en tres grandes grupos:

  1. Fermentables.
  2. Combustibles.
  3. Inertes.

En general, el número de categorías depende del objetivo que se persiga, así una clasificación más compleja podría ser la división de 10 categorías:

  1. Finos e inferiores a 20 mm.
  2. Papel – cartón.
  3. Telas.
  4. Plásticos.
  5. Huesos.
  6. Restos combustibles no clasificados.
  7. Metales.
  8. Vidrio.
  9. Restos incombustibles no clasificados.
  10. Materia orgánica.

Esta clasificación es necesaria si se desea hacer un estudio de las diferentes procesos de valoración de los residuos; tiene el inconveniente de que necesita un triaje manual y tedioso.

En la sigueiten gráfica recoge la comoposición porcentual en peso de la naturaleza de los constituyentes de los RY en España

PD: Los RU sirven para generación de calor y electricidad, su estudio y conocimiento es importante para evaluar el potencial energético.

 

J438: Visitas al blog durante el mes de febrero 2012


Muchas gracias a todos los visitantes del presente blog… este mes de febrero marcaron nuevo record de visitas, el más alto hasta el momento. Grato compartir con Uds. los temas del blog, favor difundirlo y también gracias a todos aquellos que me escriben pidiendo orientación, información, revisión de sus trabajos, asesoría. Tienen ahi el email y la dirección postal en caso necesario.

Gracias también a todos aquellos que escriben pidiendo orientación,  que revise sus trabajos, asesoría, etc… favor difundan el blog y os espero sirva a estudiantes y profesionales.

Gracias nuevamente por las visitas y queda seguir el compromiso de implementar con más el blog… Best regards


Serpentines

Los serpentines son unidades de transferencia de calor hechas de tubo liso o aleteado por los que circula un fluido en el interior de los tubos y otro se ubica dentro de un área confinada, estos equipos pueden verse comúnmente en ollas de calentamiento, contenedores de agua helada, calentadores de aire, enfriadores de aire, chaquetas de autoclaves,  etc.

La configuración de los serpentines es muy variada, aunque el principio establece que la unidad debe tener una longitud definida y el fluido entra y sale por el mismo tubo. Los serpentines suelen conseguirse en configuraciones helicoidales rectas en U, etc.

Evaporadores.

Los evaporadores son intercambiadores que se encargan de enfriar fluidos por un proceso de expansión de gas el cual circula a través del interior de los tubos y enfría el fluido que circula por la carcaza. Los evaporadores son equipos normalmente usados en los dispositivos de enfriamiento de agua tales como Chiller o para enfriamiento de gases o aire tal es el caso de los aires acondicionados. Su configuración puede estar dada en equipos de tubo coraza o flujo cruzado.

Condensadores

Se conoce como unidad condensadora a todo aquel intercambiador que cumple una función de disminución de temperatura, ya sea para gases, vapores u otros.

La configuración de un condensador puede ser de tubo coraza, placas y superficies extendidas. Los condensadores son generalmente equipos que se encuentran en los procesos de cambios de fase de gases a líquidos, los equipos de calefacción de líquidos con vapor son a su vez condensadores de vapor. En los ciclos de refrigeración los condensadores tienen la función de enfriar el gas refrigerante ya sea por flujo cruzado gas-aire o gas-agua.

Chiller

Las unidades Chiller están conformadas por dos elementos de transferencia de calor un evaporador y un condensador, además de los elementos clásicos del ciclo de refrigeración (compresor, válvula de expansión, filtros etc.) los Chiller son unidades que se encargan de enfriar agua para aplicaciones varias. Este proceso se realiza mediante la compresión de un gas refrigerante el cual sale comprimido de la bomba o compresor a una temperatura de aproximadamente 80°C , circula a través del compensador manteniendo la presión y bajando la temperatura a 40°C aproximadamente luego pasa por la válvula de expansión donde el gas se expande produciendo su enfriamiento, el gas circula dentro de los tubos del evaporador donde se genera la transferencia con el agua enfriándola hasta una temperatura que puede oscilar entre 1°C y 4°C  (o menos de acuerdo al control).

Torres de enfriamiento

Las torres de enfriamiento son unidades que se encargan de enfriar agua por un proceso de división de la partícula de agua y su posterior circulación por una corriente de aire forzado logrando reducir la temperatura de la gota de agua en el proceso. Estos sistemas tienen ventajas y desventajas bien marcadas. Las torres de enfriamiento son unidades abiertas donde el agua de un determinado proceso llega al tope de la torre a una temperatura máxima de 60°C, esta entra a los rociadores de tope que se encargan de separar él liquido en la mayor cantidad de partículas posibles, estas caen en un relleno ubicado a los lados de la torre donde establece un recorrido en contra flujo con un a columna de aire forzado, las partículas de agua recorren el relleno hasta enfriarse (1°C o 2°C por encima de la temperatura de la columna de aire) y llegan hasta la bandeja de fondo donde se retorna al proceso.

Las temperaturas máximas que manejan las torres de enfriamiento constituyen una limitante importante, así como la contaminación del agua de proceso por el contacto directo con el aire ambiental, los tratamientos de esta agua son por lo general costosos y requieren de mantenimientos constantes, sin embargo la posibilidad de enfriar grandes volúmenes de agua logra compensar sus debilidades.

Torres Evaporativas

Las torres de tipo evaporativas tienen un comportamiento similar al de las torres de enfriamiento, con la diferencia de que el agua de proceso se encuentra en un ciclo cerrado a través de un serpentín en el tope de la torre, produciéndose el enfriamiento del agua de proceso por intermedio del rociado de agua sobre la superficie del serpentín acompañado de aire forzado, el agua cae al fondo de la tina y es nuevamente bombeado al tope de la torre para volver a cumplir el proceso.

Una de las ventajas de estos equipos es que el agua de proceso se contamina muy poco ya que se encuentra en un ciclo cerrado, sin embargo su costo es sustancialmente superior al de las torres de enfriamiento.

Calentadores de agua

Los calentadores de vapor son por lo general intercambiadores de tubo coraza por los que circula vapor por la coraza y agua o gas por el interior de los tubos, existen también calentadores de aceite térmico y de resistencia eléctrica.

After cooler – pre cooler

Estos equipos son utilizados normalmente en unidades de compresión de aire ya sean de una o varias etapas. Por lo general los compresores de aire de una etapa poseen un intercambiador a la salida de aire comprimido de tipo tubo coraza agua-aire o flujo cruzado aire-aire, estos equipos son conocidos como after cooler o post enfriadores su función es bajar la temperatura del aire comprimido hasta niveles idóneos de trabajo dentro de la planta. Los pre-cooler son equipos utilizados en compresores de múltiples etapas para enfriar el aire que sale de una etapa y entra en la siguiente, por lo general estos son de tubo coraza.

Fin fan cooler

Estos equipos están compuestos de una unidad de flujo cruzado con un ventilador alineado a la superficie plana del intercambiador con la finalidad de hacer circular aire a través de la tubería aletada y enfriar el fluido que corre por dentro de los tubos.


Aún cuando la variedad de intercambiadores existentes en los múltiples procesos industriales imposibilita describir un mantenimiento específico para todos los equipos intertaré resumir las directrices que definen un mantenimiento efectivo en la mayoría de los casos.

La finalidad de un mantenimiento radica en la eliminación de los depósitos que obstruyen o imposibilitan la correcta transferencia en los intercambiadores, estas suelen producirse por deposición de los sólidos en las paredes externas de los tubos, en las paredes internas de los tubos, así como en la superficie interna de la coraza, esto para el caso de los intercambiadores de tubo coraza, en los intercambiadores de placa esta incrustación se presenta entre las láminas dificultando la transferencia de calor entre los fluidos, además de ofrecer restricciones a la circulación de estos equipos.

Las técnicas varían dependiendo del tipo de incrustación y de la configuración de los intercambiadores, así un intercambiador de placas fijas debe aplicarse una limpieza por intermedio de cepillos o alta presión por el interior de los tubos y por su configuración de área confinada para la carcaza una limpieza química que permita disolver por intermedio de la circulación la mayor cantidad de sólidos adheridos a la superficie.

Los químicos comúnmente utilizados para la desincrustación de áreas confinadas suelen variar de acuerdo al material de construcción del equipo, así como el fluido que maneja el intercambiador, en el caso de agua o vapor, se utilizan desincrustantes que pueden contener ácidos fuertes o débiles dependiendo del material de contrucción del intercambiador, por ejemplo para intercambiadores de calor construidos en acero al carbono o acero inoxidable, pueden utilizarse productos basándose en ácido clorhídrico, fosfórico, cítrico y otra formulación que permita disover los minerales producto de las deposiciones del agua o del vapor estén presentes en el intercambiador, es importante señalar que estos productos deben ser formulados, tomando en consideración las posibles consecuencias de la acción del químico sobre los materiales de construcción.

Para intercambiadores de haz removible o de tubería en u el proceso se simplifica bastante ya que la posibilidad de extraer el intercambiador de la coraza permite actuar directamente sobre la superficie externa e interna del tubo, así como acceso directo al interior de la coraza. El mantenimiento puede realizarse por intermedio de cepillos de alambre circulares mechas o latiguillo de alta presión en el interior de los tubos y alta presión por el lado externo de la tubería. La coraza puede limpiarse con elementos mecánicos o presión de agua.

Para el caso de los intercambiadores de placa, dependiendo de su estado pueden limpiarse con químicos desincrustantes en el caso de agua o desengrasante para el caso de aceites, en caso de encontrarse defectos en el sistema de sellos de estos equipos es recomendable sustituir las empacaduras entre placas y limpiar placa a placa con químicos y agua a presión.

Para el caso de intercambiadores de flujo cruzado se procede de forma similar con el interior de los tubos de acuerdo al acceso que posea el equipo, (tapas removibles o agujeros de limpieza) mientras que el área de superficie extendida se limpia con agentes químicos adecuados para el material adicionando agua de alta presión.

Para equipos involucrados dentro de los procesos tales como agua helada, condensadores de gases, serpentín de inmersión y otros es importante estudiar las condiciones de proceso para establecer el mantenimiento correcto que debe aplicarse, siempre tomando en consideración que la finalidad del mantenimiento es la de liberar de incrustaciones de las superficies de contacto de los fluidos para la optimización de la transferencia de calor.

Implicaciones de un mantenimiento en intercambiadores de calor

Para cualquier equipo de transferencia de calor, el hecho de que trabaje con niveles elevados de incrustaciones o con superficies totalmente obstruidas, puede resultar en paradas de proceso imprevistas, o en su defecto una drástica disminución de las condiciones iniciales de transferencia de diseño, por lo que una política de mantenimiento en estos equipos redunda en beneficios ulteriores económicos importantes.

Los equipos de transferencia de calor son sensibles a las deposiciones de sólidos y a las obstrucciones, dado que la superficie de los tubos y carcaza son por lo general porosas, pueden producir fuerte adherencia de sólidos y posteriores socavaduras y corrosión en los materiales. Las deposiciones de agua dura producen corrosión puntual o pitting, así como abrasión de la superficie del material, otra grave consecuencia que puede presentarse en los equipos, sobre todo en los de área confinada, o placas fijas es que los depósitos de agua dura llegan a un punto de cristalización que imposibilita la acción de los químicos, produciendo perdida completa del equipo. En el caso de equipos en u las incrustaciones de agua dura dentro de los tubos pueden ser removida por mechas en la zona recta del tubo, sin embargo en las curvas esto se hace imposible, para el caso de equipos con tubería de diámetros superiores a ¾ es posible introducir un latiguillo de alta presión, aunque en la mayoría de los casos los resultados no son muy satisfactorios.


El ensuciamiento se refiere a cualquier capa o depósito de materias extrañas en una superficie de transferencia de calor, comúnmente estos materiales tienen baja conductividad térmica (son malos conductores de calor y entorpecen la transferencia de calor), lo que provoca una mayor resistencia a la transferencia de calor. En los equipos de transferencia se producen varios tipos diferentes de ensuciamiento. La sedimentación es deposición de materiales finamente divididos, a partir del fluido del proceso. La formación de escamas se debe, con frecuencia, a la cristalización de un material cuya solubilidad, a la temperatura de la pared del tubo, es más baja que a la temperatura promedio del fluido. Muchas corrientes de proceso reaccionan y el material resultante, menos soluble, se deposita en la superficie como una película, con frecuencia de una resistencia y espesor considerable. Los productos de la corrosión pueden oponer una resistencia importante a la transferencia de calor. Los crecimientos biológicos, como las algas, constituyen un problema grave en muchas corrientes de agua de enfriamiento y en la industria de la fermentación.

Retiro de depósitos de suciedad

El retiro químico de la suciedad se puede lograr en algunos casos con ácidos débiles, disolventes especiales, etc. Otros depósitos se adhieren con debilidad y se pueden lavar mediante el funcionamiento periódico a velocidad muy altas o un enjuague con un chorro de agua, una lechada de agua y arena o vapor de alta velocidad. Estos métodos se pueden aplicar tanto al lado de la coraza como el de los tubos sin retirar el haz de tubos. Sin embargo la mayor parte de los depósitos se pueden retirar mediante una acción mecánica positiva, como la introducción de una varilla, la acción de una turbina o el raspado de la superficie. Estas técnicas se pueden aplicar  del lado de los tubos sin sacar el haz de tubos, pero en el lado de la coraza sólo se puede hacer esto después de retirar el haz, e incluso entonces, esto será con éxito limitado, debido a la cercanía de los tubos.


Materiales de construcción

El material más común de los intercambiadores de calor es el acero al carbono. La construcción de acero inoxidable se utiliza a veces en los servicios de plantas químicas y en la industria de alimentos donde se necesitan altas condiciones de asepsia y, en raras ocaciones, en las refinerías petroleras.

Las “aleaciones” en servicios de plantas químicas y petroquímicas, en orden aproximado de utilización, son el acero inoxidable de la serie 300, níquel, el metal monel, las aleaciones de cobre, aluminio, el Inconel, el acero inoxidable de la serie 400 y otras aleaciones. En servicios de refinerías petroleras, el orden de frecuencia cambia y las aleaciones de cobre (para unidades enfriadas por agua) ocupan el primer lugar, y el acero de aleación baja el segundo.

Los tubos de aleaciones de cobre, sobre todo el latón Admiralty inhibido, emplean en general con enfriamento por agua.

Los cabezales del lado de los tubos para el servicio con agua se hacen en gran variedad de materiales: acero al carbono, aleaciones de cobre, hierro colado, acero al carbono con pintura especial o recubiero con pomo o plástico.

Tubos bimetálicos

Cuando los requisitos de corrosión o las condiciones de temperatura no permiten la utilización de una aleación simple para los tubos, se utilizan tubos bimetálicos (o dúplex). Se pueden hacer en cualquier combinación posible de metales. Varían también los calibres y los tamaños de los tubos. Para calibres delgados, los espesores de las paredes se dividen en general en partes iguales entre los dos componentes elementales. En los calibres mayores, el componente más costoso puede comprender de una quinta a una tercera parte del espesor total.

Los tubos bimetálicos están disponibles a partir de un pequeño número de laminadores de tubería, y son fabricados únicamente bajo pedido especial y en grandes cantidades.

Espejos reversibles.

Por general los cabezales o espejos y otras piezas de los intercambiadores de calor son de metal fuerte. Los espejos bimetálicos o recubieros se utilizan para reducir los costos de fabricación de los equipos o porque no hay ningún papel metal simple que resulte satisfactorio para las condiciones de corrosión. El material de aleación (por lo general acero inoxidable, metal monel, etc.) se une o se deposita como revestimiento a un material de respaldo de acero al carbono. En la construcción de espejos fijos se puede soldar un espejo revestido de aleación de cobre a un espejo de acero, mientras que la mayor parte de espejos de aleación de cobre no se pueden soldar de una manera aceptable.

Construcción no metálica

Existen intercambiadores de tubo y coraza con tubos de vidrio. Los intercambiadores de calor de tubo y coraza de acero tienen una presión de diseño máxima de 75 psi, en cambio los fabricados con vidrio tiene una presión de diseño máxima de 15 psi. Todos los tubos tienen libertad de expandirse, ya que se emplea un sellador de teflón en la unión del espejo al tubo.

Fabricación

La dilatación del tubo en el cabezal reduce el espesor de la pared del tubo y endurece el metal. Los esfuerzos inducidos pueden provocar una corrosión por esfuerzo. La diferencia de dilatación de los tubos y la coraza en intercambiadores de espejo o cabezal fijo pueden desarrollar esfuerzos que producen corrosión.


Existen intercambiadores de tipo de placa en varias formas: en espiral, de placa (y armazón) de aleta con placa soldada y de aleta con placa y tubo.

Intercambiadores de placa en espiral.

El intercambiador de placa en espiral se hace con un par de placas laminadas para proporcionar dos pasos rectangulares relativamente largos para los fluidos en flujo en contracorriente. La trayectoria continua elimina la inversión del flujo (y la caída consiguiente de la presión), las desviaciones y problemas de dilataciones. los sólidos se pueden mantener en suspensión. Se produce turbulencia con una velocidad de flujo más baja que en el caso de los tubos rectos.

El diseño en espiral es compacto si se toma en cuenta que puede proporcionar 167 m2 (1800 pie2) de superficie de transferencia de calor en una unidad de 1.4 m (56 plg) de diámetro. La espiral tiene, generalmente, una altura de 1.5 m (60 plg).

Los intercambiadores de calor se pueden diseñar para presiones de hasta 150 psi (10.2 atm). Los materiales de construcción incluyen el acero al carbono, acero inoxidable de los tipos 304, 316 y 430F, aleación 20, Inconel, metal monel, níquel, Hastelloy B y C, Everdur y titanio.

Intercambiadores de placa y armazón

Los intercambiadores de placa y armazón consiste en placas estándares, que sirven como superficies de transferencia de calor y un armazón para su apoyo. La caída de presión es baja y resulta imposible que haya fugas de fluidos.

Las placas estándares de transferencia de calor (normalmente de acero inoxidable de los tipos 304 y 316, pero también de titanio, níquel, metal monel, Incoloy 825, Hastelloy C, bronce al fósforo y cuproníquel también están disponibles), comprimidas en una pieza simple de material de 1.3 a 6.4 mm (0.05 a 0.125 plg), tiene estrías para recibir empaques de goma (elastómero). El diseño corrugado de las placas les da rigidez, formenta la turbulencia de los fluidos y asegura la distribución completa del flujo. Los miembros de soporte y armazón existen en acero inoxidable recubiertos o acero dulce esmaltados. Las placas se pueden limpiear y reemplazar con facilidad. El área se ajusta con facilidad mediante la adición o eliminación de placas.

Cuando se especifica una construcción de lado del tubo de acero inoxidable o para servicios múltiples, el tipo de placa compite con el diseño tubular. Si se requiere una construcción total de acero inoxidable, el tipo de placa es menos costoso que las unidades tubulares.

El límite superior de un intercambiador de calor de placa estándar se señala que es de 650 m2 (7000 pie2) de superficie de transferencia de calor. De modo que una mida 1.1 m (4.2 pie) de ancho por 4.2 m (13.8 pies) de longitud, por 2.8 m (3.1 pies) de altura con 400 placas.

Intercambiadores de calor de aleta con soldadura fuerte

Los intercambiadores de aleta y placa de aluminio se emplean en la industria de la elaboración, sobre todo en servicios por debajo de -45.6°C (-50°F) y en los procesos de separación de gas que funcionan entre 204 y -268°C (400 y -450°F).

La superficie de transferencia de calor de aleta y placa se compone de una pila de placas, cada una de las cuales consiste en una aleta corrugada entre láminas metálicas planas, selladas en los dos lados mediante canales o barras, para formar un paso para el flujo del fluido.


En la presente entrada he considerado presentar los diagramas (figuras) de diferentes tipos de intercambiadores de calor. Estos equipos son utilizados en algunas aplicaciones de energías renovables y es bueno saber como funcionan… espero que los diagramas sean lo bastante claros y entendibles para quienes desean profundizar en el tema.