Archive for the ‘Sustainable management’ Category


diapositiva1 diapositiva2 diapositiva3 diapositiva4 diapositiva5 diapositiva6 diapositiva7 diapositiva8 diapositiva9 diapositiva10 diapositiva11 diapositiva12 diapositiva13 diapositiva14 diapositiva15 diapositiva16 diapositiva17 diapositiva18 diapositiva19 diapositiva20 diapositiva21 diapositiva22 diapositiva23 diapositiva24 diapositiva25

Anuncios

diapositiva1 diapositiva2 diapositiva3 diapositiva4 diapositiva5 diapositiva6 diapositiva7 diapositiva8 diapositiva9 diapositiva10 diapositiva11 diapositiva12 diapositiva13 diapositiva14 diapositiva15 diapositiva16 diapositiva17 diapositiva18 diapositiva19 diapositiva20 diapositiva21 diapositiva22 diapositiva23 diapositiva24 diapositiva25 diapositiva26 diapositiva27 diapositiva28 diapositiva29 diapositiva30


morebooks-jorge-mirez-libro-introduccion-modelamiento-simulacion-de-microredes-de-energia portada_primer_libro

Enlace del libro (información, precio, compra): https://www.morebooks.de/store/es/book/introducci%C3%B3n-al-modelamiento-y-simulaci%C3%B3n-de-microredes-de-energ%C3%ADa/isbn/978-3-639-63529-4

Introducción al Modelamiento y Simulación de Microredes de Energía
Un acercamiento a los sistemas eléctricos del futuro mediante la ingeniería, física, matemática y programación
Editorial Académica Española (2016-10-25 )

ISBN-13:978-3-639-63529-4
ISBN-10:3639635299
EAN:9783639635294

Idioma del libro:
Notas y citas / Texto breve:

En el libro desarrollo el modelamiento y simulación de una microred (microgrid) de voltaje continuo/alterno alimentado con fuentes solar fotovoltaica, eólica, de almacenamiento, una red eléctrica convencional (red de empresa pública o privada de electricidad) y que posee además cargas eléctricas. En dicha microgrid se realiza la evaluación del comportamiento de los parámetros del sistema: voltaje, corriente, potencia y energía eléctrica, en condiciones normales de funcionamiento. Matlab/Simulink de MathWork Inc. es la herramienta de simulación usada y los códigos son dados en Anexos. El libro está pensando para un amplio círculo de lectores, entre: (a) estudiantes de pregrado y postgrado de diferentes carreras relacionadas a la temática de microgrids, energias renovables y energia en general, como son de ingeniería mecanica, eléctrica, electrónica y electromecanico; física, matemática, computacion, economía, entre otras; (b) empresarios y profesionales que desean especializarse o ampliar sus conocimientos en energías renovables y/o modelamiento matemático y simulación numérica; (c) autoridades y público en general interesados en temas de energía.
Editorial: Editorial Académica Española
Sitio web: https://www.eae-publishing.com
Por (autor): Jorge Luis Mírez Tarrillo
Número de páginas: 240
Publicado en: 2016-10-25
Categoría: Tecnología
Palabras clave: Energías renovables, Microred, Modelamiento y Simulación, sistema eléctrico, Matlab Simulink

(Dénle Me gusta en mi Fanpage personal: http://www.facebook.com/jorgemirez )


Los sistemas eléctricos en el futuro próximo cercano van a tener que ser inteligentes por obligación competitiva entre empresas eléctricas a fin de optimizar y mejorar sus prestaciones, esto sumado a la implementación de tecnologías de energías renovables, generación distribuida, entre otras. En especial énfasis la distribución dado que promueve los activos de generación. Ante ello un nuevo marco de transmisión y distribución se hace necesario en muchos países, siendo el marco regulativo de distribución el de mayor desafío. Incluyendo la interacción con los clientes, los cuales son más activos ahora, por ejemplo, ahora se tiene que si llaman varios clientes de una misma zona se deduce que se tiene una falla. Siendo ahora cada vez más importante en la vida diaria de las personas y las industrias se requiere cambios de índices de continuidad de suministro (1) continuidad, cantidad y tiempo de cortes, (2) calidad del producto eléctrico: armónicas, flicker’s, voltaje, frecuencia, factor de potencia y (3) atención comercial. Además, se debe tener esquemas de tarifa muy óptimos y generales de tal manera que las empresas tengan una perspectiva en el tiempo estable y lo menos complicado posible. Los marcos regulatorios (regulativos) contemplados desde hace años no se adaptan a la modernidad existente.


J996_Manifestación de la energía geotérmica en el Perú

En Perú – mi país – la manifestaciones de energía geotérmica son debidos principalmente a la interacción entre la placa oceánica de Nazca que se desplaza hacia el interior y por debajo de la placa continental. Esto se llama movimiento convergente de las placas. Cerca a la costa hay una parte profunda que por coincidencias de la naturaleza se llama el uppelling peruano, generador de la gran riqueza marina y que espero se conserve para la alimentación de la población peruana (dado que tenemos una fuente excelente de alimentación, pero tenemos 14 % de niños con desnutrición) ya que se lee en noticias que eso lo venden a las empresas extranjeras y el Ministerio del Medio Ambiente está pintado. En la parte central del Océano Pacífico asciende magma del interior de la Tierra lo cual es un movimiento divergente de las placas oceánicas. Recordar que el manto tiene 1.5% de material fundido que es sobre el cual la corteza terrestre “flota” y basta temperaturas de 700 °C para que las rocas de la placa de Nazca que se desplazan hacia abajo y por debajo de la placa continental se fundan. Hay zonas propensas de terremotos por lo general ubicados en lo que corresponde al Cinturón de Fuego del Pacífico. En el Sur de Perú y Chile hay volcanes bastante activos y muchas manifestaciones en superficie (fumarolas, aguas termales, etc) de indicios de anomalías térmicas que implica una cercanía del magma a la superficie terrestre o la presencia de fallas o fisuras que permiten ello. Con importancia para quienes deseen realizar investigaciones en la determinación de potenciales recursos geotérmicos y la predicción de terremotos…


J987_Planta Geotérmica para la Generación de Electricidad_Diagrama 1 J987_Planta Geotérmica para la Generación de Electricidad_Diagrama 2

En el presente post se muestra dos esquemas de uso de la energía geotérmica para la generación de electricidad hechos con el diseño de tipo binario. El fluido caliente proveniente del interior del planeta asciende y en la superficie ingresa a un intercambiador de calor en que cede parte de su calor hacia un segundo fluido el cual no tiene contacto directo con el fluido proveniente del pozo geotérmico. El vapor saturado o sobrecalentado se ingresa a una turbina de vapor de agua en el que parte de su energía se transforma en energía mecánica de rotación y se va expandiendo hasta su salida de la turbina en la que luego pasa a un condensador. El sistema puede tener una parte de alta y baja presión, es decir, una turbina de alta presión y otra turbina de baja presión. Útil en campos geotérmicos cuando se tiene altas temperaturas y presiones.

Para variar hay los que el vapor sale del pozo geotérmico e ingresa a un separador de vapor, en la que el líquido se reinyecta al pozo y el vapor pasa hacia la turbina de vapor. Acá hay que tener en cuenta la calidad del vapor por un lado y los componentes del vapor de agua por otro lado, dado que el agua en vapor no es corrosivo pero si los componentes que son arrastrados por el fluido proveniente del pozo geotérmico. El vapor forzado a recorrer la turbina entrega parte de su energía y la mezcla líquido – vapor a la salida se condensa y se reingresa hacia el interior del planeta.

Hay que considerar que hay una eficiencia en convertir parte de la energía térmica en mecánica y electricidad y eso es algo que se desea, pero tanto ya el consumo de dicha energía por el usuario final y la energía que se disipa hacia el medio ambiente por parte del condensador para volver líquida el agua, contribuyen a incrementar la carga térmica sobre el medio ambiente (por lo general la atmósfera) por el principio de conservación de la energía.


J986_Gradiente de temperatuar

Usualmente se dice que la temperatura al interior de la Tierra varía de manera constante y no es así. En principio debido a que los estratos terrestres son diferentes en cada lugar del planeta (la composición de las rocas y sustratos), incluso cambian con el tiempo con la interacción entre la lluvia, el viento, las mareas y con el progresivo movimiento de las placas. En la figura se observa una representación del cambio de temperatura a medida que se parte desde la superficie en un kilómetro. Los cambios de temperatura son importantes para determinar el material adecuado de las tuberías a fin de que puedan compensar las deformaciones, además, el cambio de temperatura da a saber las direcciones del flujo térmico y lugares en que también se esté generando calor. Esta curva refleja el estado estable de temperaturas al interior de la corteza, entonces como es estado estable, indica que si hay pérdida de energía en una dirección, hay ganancia en la otra dirección y por lo tanto la temperatura se muestra como tal; si esto se cumpliera se tendría una temperatura uniformemente variable en función de la profundidad, pero se observa que no lo es, entonces hay lugares en donde se pierde un poco más de energía y otros en los que se genera. Causas, motivos y variaciones en el tiempo son temas de estudio interesantes y dependen de la geología y la dinámica de la corteza en el lugar de estudio.

Conferencia “Motivación en Ingeniería Mecánica Eléctrica, Biomédica y Espacial”. Ciclo de Charlas de Motivación – Lugar Polideportivo Colegio Nacional San Juan de Chota, Chota – Perú. Lunes 20 Junio 2016 – 9 am. Organiza: Promoción Bodas de Plata 1987-1991 “Horacio Zeballos Gamez” – CN San Juan de Chota (in spanish)


Control levels of the microgrid environment

The DNO’s responsible for the technical operation in a medium and low voltage area, in which more than one Microgrids may exist. In addition, one or more MO’s are responsible for the Market Operation of this area. These two entities do not belong to the Microgrid, but they are the delegates of the grid. The DNO
refers to the operational functions of the system and the MO to the Market functions. It should be noted that, despite the autonomous operation of the Microgrid, it should ideally appear as a controlled, intelligent unit in coordination with the DNO.

The MGCC is the main responsible for the optimization of the Microgrid operation, or alternatively, it simply coordinates the local controllers, which assume the main responsibility for this optimization.

The LC’s control the Distributed Energy Resources (DER), production and storage units, and some of the local loads. Depending on themode of operation, they have certain level of intelligence, in order to take decisions locally. Of course, in any type of operation there are certain decisions that can be taken only locally.

Source:
Aris L. Dimeas, Nikos D. Natziargyriou “Operation of Multiagent System for Microgrid Control” IEEE Transactions on Power Systems, Vol. 20, No. 3, August 2005.


distribution demand between micosourses electrical network external and storage in a microgrid DC

Sun –> energy provided from photovoltaic energy plant.
Wind –> similar from wind turbine(s)
Batt –> similar from battery bank
ene –> similar injected from electrical network external or utility electric network

In other image in red is the total suministed for this sources and red line is the demand. Other images is cost, evoluction of energy supply from each source and more details. It is made for me (Jorge Mírez) in Matlabb/Simulink and I utilized concept of linear programming. Image is from my destokp laptop.


Annual historic energy demand of Ecuador country by years from 1999 to 2012

This figure represents the electrical demand in Ecuador. It is noted that during the study period, nearly doubled the demand for electricity. Currently Ecuador already has a transmission line at 500 kV. With technology centers as Yachay, I recommend that Ecuador must bet for the development of technologies such as solar photovoltaics, wind turbines and biomass. Other technologies are possible and with higher added value.

 


The DC microgrid based on modular PV generation system

The DC bus coupled microgrid investigated in this paper is shown in Fig. 1. DC/DC converters for PV modules, a bidirectional DC/DC converter for battery, a bi-directional DC/AC converter and local loads share a DC bus. The modular photovoltaic generation system is the key element in this DC microgrid, which consists of three DC/DC converters with modular design and same ratings. These  modular converters transfer the power generated by PV arrays to DC bus. The battery with bi-directional DC/DC
converter is used to balance the power differences between PV power supplies and local loads in islanding mode. The local loads include the auxiliary power supplies for microgrid operations, such as control/monitoring of PV arrays, battery monitoring, control/driving of converters. The bi-directional DC/AC converter is used to realize the connection between DC microgrid and AC grid

Reference:
Li Zhan, Tianjin Wu, Yan Xing, Kai Sun, Josep M. Guerrero. “Power Control of DC Microgrid Using DC Bus Signaling”. Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE.


simulations load diagram electric

During operation a microgrid, sometimes; renewable energy sources and the external power grid, dispatched electric energy simultaneously. Sometimes, many sources is neccesary for supply to electric load. Also, all it, considering both economic and technical criteria. The figure represent la connection and disconnetion of sources for each state of performance of a microgrid. Too, it is applicable to other similar electric systems.


energy of each source accumulate

In a microgrid, each energy source is required according to the criterion of costs and production capacity. During the operation time, accumulative energy from each source is represented in the figure. Criteria of linear optimization has been used in this modelling and simulation. This allows determining the nominal capacity and the ability to respond to sudden requests. Made on Matlab of MathWorks Inc.


Schematic of a typical wind diesel hybrid system with storage

One of the most promising applications of renewable energy technology is the installation of hybrid
energy systems (HES) in remote areas, where the grid extension is costly and the cost of fuel increases drastically with the remoteness of the location. Recent research have shown that HES have an excellent potential, as a form of supplementary contribution to conventional power generation systems. In figure, one of the most common hybrid renewable system implemented and studied is described.

Source:
Francisco Goncalves Goina Mesquita. “Design Optimization of Stand-Alone Hybrid Energy Systems”. A Dissertation submitted under the scope of Mestrado Integrado em Engenharia Electrotécnica e de Computadores Major Energia. Fevereiro de 2010. Facultade de Engenharia da Universidade do Porto.

 


Topology of a generic VPP showing the integration of energy, electrical and information system

The figure shows the minimum requirements for a VPP: a number of small participants (consumers or DERs); a communications network (the internet or dedicated lines); a communication platform with a common information model and a consensus on the communication architecture; a primary energy supply network; and a link to the energy market. The primary energy supply is the foundation of the VPP, the communication system forms the glue holding the VPP together, and the market link is the incentive which drives the system to service the needs of its owners and customers.A VPP may be dispersed over a large area, though in the case of islands and other microgrids it may equally well have tight geographical limits.

Source:
Riso Energy Report 8. “The intelligent energy system infraestructure for the future”. Riso National Laboratory. Technical University of Denmark. September 2009. ISBN 978-87-550-3754-0


Denmark’s  gross energy  consumption  and  primary  energy

Denmark is the only net exporter of energy in the EU. In 2005, production from Danish oil and gas fields in the North sea exceeded the country’s gross energy consumption by 56%. At the same time Denmark has an environmentally-friendly energy profile that includes considerable amounts of renewable energy, especially wind power; strong energy efficiency measures; and widespread use of combined heat and power (CHP). For more than 20 years Denmark has kept its gross energy consumption almost constant, with an increase of just 4% since 1985, despite a 70% increase in gross national product in the same period. In short, Denmark is in a far better energy situation than most countries in the EU

Source:
Riso Energy Report 6. “Future options for energy technologies”. Riso National Laboratory. Technical University of Denmark. November 2007. ISBN 978-87-550-3611-6


Roadmap for microgrid development

Currently, an increasing number of microgrid pilot sites can be observed in many parts of the world. It is true, however, that up to now,cost, policy and technology barriers have largely restrained the wide deployment of microgrids in distribution networks owing to their limited commercial appeal or social recognition. However, these three barriers are currently undergoing considerable changes – they are very likely to turn into key enablers in the future, eventually leading to a widespread microgrid adoption worldwide.

Firstly, the cost factor might prove to be the most effective driving force for microgrids in the very near future. This might happen not only because of the reduction of microsource costs, but also because of the relative changes of external opportunity costs due to economic (fluctuating market prices), technical (aging of network infrastructure) and environmental (emission trading) factors.

When microsource penetration at a LV grid becomes significant, participants in the electricity retail business will consider the aggregated power from small generators as a new market opportunity. Unlike in the case of VPP, microgrid stakeholders will eventually recognize a unique feature of aggregated microsource units, namely locality: the microsource units can potentially sell directly to end consumers in an “over-the-grid” manner. In order to turn this potential into reality, however, the second factor – appropriate policy and regulatory environment – is needed to enable the operation of a local market within a microgrid.

Finally, the adoption of favorable selling prices in local retail markets will attract even more microsource units, allowing the microgrid to operate islanded, if beneficial. With the help of smart metering, control and communication technologies, the microgrid operator will eventually be able to coordinate a large consortium of intermittent and controllable microsource units, as well as central and distributed storage devices, to achieve multiple objectives and, at the same time, to cater for the interests of different stakeholders.

Source:
MICROGRIDS: Architectures and Control
Nikos Hatziargynou


Microgrid operation strategies

Currently available DG technologies provide a wide variety of different active and reactive power generation options. The final configuration and operation schemes of a microgrid depend on potentially conflicting interests among different stakeholders involved in electricity supply, such as system/network operators, DG owners, DG operators, energy suppliers, customers and regulatory bodies. Therefore, optimal operation scheduling in microgrids can have economic, technical and environmental objectives

Depending on the stakeholders involved in the planning or operation process, four different microgrid operational objectives can be identified: economic option, technical option, environmental option and combined objective option.

In the economic option, the objective function is to minimize total costs regardless of network impact/performance. This option may be envisaged by DG owners or operators. DGs are operated without concern for grid or emission obligations. The main limitations come from the physical constraints of DG.

The technical option optimizes network operation (minimizing power losses, voltage variation and device loading), without consideration of DG production costs and revenues. This option might be preferred by system operators.

The environmental option dispatches DG units with lower specific emission levels with higher priority, disregarding financial or technical aspects. This is preferred for meeting environmental targets, currently mainly supported by regulatory schemes. DG dispatch is solely determined by emission quota; only DG physical limitations are considered.

The combined objective option solves a multi-objective DG optimal dispatch problem, taking into account all economic, technical and environmental factors. It converts technical and environmental criteria into economic equivalents, considering constraints from both network and DG physical limits. This approach could be relevant, for instance, to actors that participate not only in classical energy markets, but also in other potential markets for provision of network services and emission certificates

Source:
MICROGRIDS: Architectures and Control
Nikos Hatziargynou


FACTS devices can enhance the power flow on existing power lines. For the transmission line shown in figure, the sending end voltage isVS∠δS, the receiving end voltage is VR∠δR and the equivalent impedance of parallel connected lines isX. The power transfer through the lines is given by:

FACTS equation

the figure also shows how FACTS devices act on the power transfer equation. The TCSC can change the impedance of the line, the STATCOM can control the voltage magnitude at

FACTS applications for increased power transfer

the terminal to which it is connected by injecting or absorbing reactive power and the UPFC can alter the phase angle of the sending end voltage, thus power flow through a line can be controlled in a number of ways.

Source:
SMART GRID
TECHNOLOGY AND APPLICATIONS
Janaka Ekanayake
Cardiff University, UK
Kithsiri Liyanage
University of Peradeniya, Sri Lanka
Jianzhong Wu
Cardiff University, UK
Akihiko Yokoyama
University of Tokyo, Japan
Nick Jenkins
Cardiff University, UK
A John Wiley & Sons, Ltd., Publication