Archive for the ‘Distribuited Generation’ Category


Proposals to the Operation, Tertiary Control and Optimization of DC Microgrids
Jorge Mírez, Luis Hernández Callejo, Manfred Horn, Gabriela Mendoza and Lilian J. Obregón.
Universidad Nacional de Ingeniería, Lima, Perú.
Universidad de Valladolid, Campus Duques de Soria, Soria, España.
jmirez@uni.edu.pe
Congreso Iberoamericano de Ciudades Inteligentes
(ICSC-CITIES 2018)
Realizado el 26 y 27 de septiembre de 2018 en el Auditorio del Campus Universitario Duques de Soria (Soria, España), con el patrocinio del Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED), España.
Anuncios

Escribir al correo para que puedan ingresar a la universidad, el evento no tiene costo y de todas las universidades y demás instituciones públicas y privadas pueden ingresar …
Dar “Me Gusta a mi Fanpage – es probable que lo transmitamos”
Fanpage: https://www.facebook.com/jorgemirezperu/

Write to the mail so they can enter the university, the event has no cost and all universities and other public and private institutions can enter …
Give “I like my Fanpage – we transmit it through”
Fanpage: https://www.facebook.com/jorgemirezperu/

 


Las numerosas áreas de tecnología de las Smart Grids (cada una compuesta por conjuntos de tecnologías individuales) abarcan toda la red, desde la generación hasta la transmisión y distribución hasta varios tipos de consumidores de electricidad. Algunas de las tecnologías se están desplegando activamente y se consideran maduras en su desarrollo y aplicación, mientras que otras requieren mayor desarrollo y demostración. Un sistema de electricidad totalmente optimizado desplegará todas las áreas de tecnología en la Figura colocado en el presente post. Sin embargo, no es necesario instalar todas las áreas de tecnología para aumentar la “elegancia” de la red [1]

Estas áreas tecnológicas pueden ser complementadas con lectura adicional y que iré colocando en éste mi blog de manera progresiva, a lo que voy es que las Smart Grids son mucho más complejas de la “pincelada académica, mediática y comercial” que se le puede dar.

[1] IEA


Los esfuerzos para reducir las emisiones de CO2 relacionadas con la generación de electricidad y reducir las importaciones de combustible han llevado a un aumento significativo en el despliegue de tecnología de generación variable. Se espera que este aumento se acelere en el futuro, con todas las regiones del mundo incorporando mayores cantidades de generación variable en sus sistemas de electricidad (ver Figura). Como las tasas de penetración de generación variable aumentan en niveles de 15% a 20%, y dependiendo del sistema eléctrico en cuestión, puede ser cada vez más difícil garantizar una administración confiable y estable de los sistemas eléctricos que dependen únicamente de arquitecturas de red convencionales y flexibilidad limitada. Las Smart Grids soportarán una mayor implementación de tecnologías de generación variable al proporcionar a los operadores información del sistema en tiempo real que les permite administrar la generación, la demanda y la calidad de la energía, aumentando así la flexibilidad del sistema y manteniendo la estabilidad y el equilibrio.

Hay algunos buenos ejemplos de enfoques exitosos para integrar recursos variables. El operador de sistemas de transmisión de Irlanda, EirGrid, está implementando tecnologías de Smart Grids, que incluyen conductores de baja temperatura y alta temperatura y sistemas de protección especial de clasificación de línea dinámica, para administrar la alta proporción de energía eólica en su sistema y maximizar la efectividad de la infraestructura. El funcionamiento del sistema se está mejorando a través de modelado de última generación y herramientas de apoyo a la toma de decisiones que proporcionan análisis de estabilidad del sistema en tiempo real, capacidad de despacho de parques eólicos y pronósticos de viento mejorados, y análisis de contingencia. Se estima que la flexibilidad del sistema y los enfoques de Smart Grids facilitan las penetraciones de viento en tiempo real hasta el 75% para 2020 (EirGrid, 2010).


El 2DS presenta una estrategia para satisfacer la demanda de servicios energéticos de uso final en las ciudades, acompañado de una reducción considerable del consumo de energía primaria y de sus impactos medioambientales. De hecho, las ciudades no solo impulsan la demanda energética y sus impactos medioambientales; también pueden ofrecer grandes oportunidades para orientar el sistema energético mundial hacia una mayor sostenibilidad. El hecho de acelerar la implementación de tecnologías energéticas limpias en el entorno urbano y de promover cambios de comportamiento entre sus ciudadanos puede disociar notablemente el crecimiento del consumo urbano de energía primaria y de las emisiones de carbono, del aumento del PIB y de la población, garantizando al mismo tiempo un acceso continuo a los servicios de uso final. Por ejemplo, en el 2DS, la demanda urbana de energía primaria puede limitarse mundialmente a 430 EJ de aquí a 2050 (el 65% de la demanda de energía primaria total), lo cual representa un aumento inferior al 20% desde 2013, mientras que durante el mismo período, se espera que la población urbana aumente un 67% y el PIB un 230%. Respecto a los niveles en el 6DS, las emisiones de carbono derivadas del consumo energético urbano podrían reducirse un 75% para 2050. En general, el potencial de reducción de emisiones relacionado con el consumo energético urbano de aquí a 2050 en el 2DS asciende a 27 gigatoneladas (Gt), lo cual equivale al 70% de las reducciones de emisiones totales en el 2DS (Gráfico 1.2), y no sería posible sin la transformación de los sistemas energéticos urbanos.

En el 2DS, la demanda energética final en los sectores de los edificios y el transporte urbanos en 2050 se reduce en un 60% (unos 80 EJ) con respecto al 6DS. Estos ahorros energéticos pueden hacerse realidad evitando la “necesidad” de una serie de servicios energéticos de uso final (p. ej., reduciendo la longitud y frecuencia de los trayectos en ciudades compactas) y con más opciones de eficiencia energética para satisfacer el mismo nivel de demanda de servicios, como el cambio del modo de transporte reemplazando el coche personal por el transporte público, caminar e ir en bicicleta. Los ahorros energéticos y los combustibles de bajas emisiones de carbono en edificios y transporte urbanos pueden entrañar una reducción directa e indirecta (i.e., generación evitada de electricidad y calor) de las emisiones de unas 8 Gt de aquí a 2050 en el 2DS (con respecto al nivel logrado en el 6DS), lo cual equivale a casi dos tercios de la reducción total de emisiones de estos dos sectores y a cerca del 40% de la de todos los sectores de uso final. La clave de una parte importante de este potencial de energía sostenible en sistemas urbanos radica en una mayor electrificación de los usos finales (la electricidad es el mayor vector energético urbano en el 2DS para 2050), por ejemplo, mediante bombas de calor y vehículos eléctricos, acompañada de un sector eléctrico con drásticas reducciones de emisiones de carbono.

Fuente: IEA


Invitación a Defensa de Tesis: “CONTROL, OPTIMIZACION Y GESTIÓN DE MICRORREDES DE CORRIENTE CONTINUA” para optar el Grado Académico de Doctor en Ciencias con mención en Física. Elaborado por Jorge Luis Mírez Tarrillo bajo el asesoramiento de Dr. Manfred – Universidad Nacional de Ingeniería y Dr. Joseph Guerrero – Universidad de Aalborg. Se realizará en el Auditorio de la Oficina General de Posgrado en el Pabellon Central de la Universidad Nacional de Inngeniería (Distrito del Rímac, Lima, Perú) el jueves 03 de mayo del 2018 a las 11 AM (hora de Perú)

Link del evento :
https://www.facebook.com/events/1630793593706448/ 

Darle Me Gusta a mi Fanpage: http://www.facebook.com/jorgemirezperu 


En el presente post doy una videocharla sobre lo que voy a hablar hoy en SINATEC 2017 “IMPORTANCIA Y TRANSICIÓN DE LAS REDES ELÉCTRICAS INTELIGENTES” a realizarse en la Universidad Nacional del Callao hoy 23 octubre a las 2:40 pm. Espero les interese y presto a brindar mis servicios de consultoría y capacitación en temas de sistemas eléctricos, energías renovables, equipamiento para hospitales, elaboración y desarrollo de investigaciones, además de expedientes de instalaciones eléctricas y mecánicas; tanto a nivel nacional (Perú) como internacional. Mi email de contacto es jmirez@uni.edu.pe y por WhatsApp a +51970030394

PD: Información adicional lo pueden encontrar en mi fanpagehttp://wwwfacebook.com/jorgemirezperu y en mi blog de energías renovables y Matlab/Simulink https://jmirez.wordpress.com, otros blogs y redes sociales de interés lo pueden encontrar en http://www.geocities.ws/jorgemirez

 


En este post les compato las en jpg diapositivas de mi ponencia “Concepto e Importancia de las Redes Eléctricas Inteligentes” a dar en el Coloquio “Energía Renovable y Smart Grids en el Perú” a realizarse en FIEE – UNI, Lima, Perú a las 3 pm del 29 de Setiembre del 2017

(please darle like a mi fanpage http://www.facebook.com/jorgemirezperu)


Diapositivas de mi conferencia “Taller de Redacción y Elaboración de Papers” dictado en Pontificia Universidad Católica del Perú -PUCP en Lima, Perú; el miércoles 13 setiembre 2017 en el Facultad de Ciencias e Ingeniería, organizado por AIESEM. Van los JPG de las diapositivas.

El video lo pueden visualizar en mi fanpage http://www.facebook.com/jorgemirezperu o también a continuación:

 

 


Mis alumnos y tesistas usualmente me han preguntado como llegar a hacer modelos de una máquina o sistema completo, es decir, de toda una instalación en general. Bueno algunas cosas a considerar les doy a continuación. En primer lugar usar un software de alto nivel, no es que vaya en contra del software libre, sino que estamos hablando a modo de usuarios como ingenieros y científicos que lo menos que deseamos es lidiar con el mismo software; en mi caso uso Matlab/Simulink. En segundo lugar es despiezar el sistema en sus principales componentes, todos ellos se pueden identificar pues utilizan un propio sistema de ecuaciones para ser descritos; por ejemplo: las ecuaciones de un motor eléctrico son diferentes a de una bomba de agua; aún así dentro de cada parte hay sub-partes a considerar dependiendo de la profundidad del problema que se desea abodar. Tercero: se debe comenzar a modelar ecuación por ecuación, sacando el máximo provecho a cada uno de ellas con diferentes valores de entrada y analizando los valores de salida (los resultados), poco a poco se irán simulando cada vez mas ecuaciones y así mismo se irá construyendo el criterio propio de análisis de los resultados para dicho problema. Cuarto: Una vez que se tiene ya varias ecuaciones de los componentes se da el gran paso que es integrar dichos modelos en modelos más grandes que describan los componentes o sistemas; esta integración es en parte todo un arte que se debe cultivar con práctica, paciencia y perseverancia a fin de que los modelos y simulaciones nos arrojen resultados predecibles y comprendibles en base a la experiencia anteriormente ya construída. Quinto: Teniendo ya los modelos de las cosas que deseabamos, un último toque es el “maquillaje” de los resultados, presentándolos lo más interesante y visiblemente adornados a fin de cautivar al público oyente o lector.

Los pasos descritos asumo por los comentarios que me han dado que es algo que casi todos los logramos entender, sin embargo, la principal dificultad radica en (i) el orden de ecuaciones a programar, (ii) la programación en sí de cómo le hago para que la computadora me dé lo que quiero ver y (iii) la integración de varios componentes – varios códigos o programas – en un sólo programa grande, lo cual es algo que puede causar muchas horas de intriga, pasión, duda y contradicción pero que tarde o temprano es un gran alivio y alegría poder lograrlo. Todo esto es como un gran rompecabezas en que hay que estar atento a solución lógica que se presenta ante nuestros ojos en medio del abanico de ecuaciones que tengan que simular.


Lo deseable de la generación eléctrica mediante el aprovechamiento de fuentes renovables, es que se deje de comprar energía a la red eléctrica publica. Sin embargo, se debe estudiar bien ambos sentidos de flujo de energía, es decir: la energía desde la red hacia la microred y desde la microred hacia la red. Ambos casos son importantes, de pronto, no todo va a ser energía renovable, eso es una ilusión, el mercado de la energía es tan grande que hay buenos esfuerzos pero ni en muchos decenios se pasará a tener un mundo 100 % renovable, eso hay que entender. Desde la microred hacia la red se puede inyectar energía pero esto también involucra cambios en el mercado eléctrico en que toda las empresas se ven afectadas por la autogeneración a nivel de distribución, esto conlleva a proteger sus inversiones y a planificar también el modo de operación y predicción de la producción de energía lo que conlleva a cambios de precio en el mercado eléctrico y por ende un mayor nivel de automatización para reducir costos. Desde la red hacia la microred es todo algo nuevo, dado que de alguna manera la red debe predecir las necesidades de la demanda y adaptarse a dicha necesidad, dada la incertidumbre todas las técnicas para comportamiento estocástico se han venido desarrollando con mayor o menor éxito y que repercuten en la planificación de la producción, la reserva fría, los márgenees de utilidad, etc. En resumen, hay “verdes” que le echan todo tipo de flores a uno que otro adelanto técnico de las energías renovables y considero que es más por hacer la cosa mediática que aterrizar sobre suelo firme el cual es las mismas bases del mercado eléctrico y que tiene sus particularidades principalmente si nos enfocamos en los mercados más importantes que son Asia, Europa, Norteamérica y países en desarrollo… (con sistemas eléctricos nacionales de pocos GW de máxima demanda no se puede hablar de implementación de SmartGrids…)


“A modeling and simulation of optimized interconnection between DC microgrids with novel strategies of voltage, power and control”
Jorge Mírez
2017 IEEE Second International Conference on DC Microgrids (ICDCM)
Year: 2017
Pages: 536 – 541
IEEE Conference Publications..

IEEE_Nuremberg_JORGE_MIREZ_1

My Fanpage: https://www.facebook.com/jorgemirezperu/ 



Good Morning. I take this opportunity to ask if you know someone I can exhibit for me in Nuremberg, Germany on Thursday 29 at 13 a.m. as part of the 2nd Conference International of DC Microgrids http://www.icdcm.co/. I have tried to be able to go but I do not think I can do it, so in order not to lose the exhibition I ask to know about it. I would send the PPT, the article and the payment of the registration. My paper is “A Modeling and Simulation of Optimized Interconnection between DC Microgrids with novel strategies of voltage, power and control”. Thank you. My WhatsApp +51970030394

Buenos días. Aprovecho este medio para preguntar si conocen alguien que pueda exponer por mi en Nuremberg, Alemania el jueves 29 a las 13 h como parte de la 2nd Conference International de DC Microgrids http://www.icdcm.co/ . He procurado poder ir pero no creo que lo logre, asi que para no perder la exposición solicito saber de ello. Le enviaria el PPT, el articulo y el pago de la inscripción. Mi ponencia es “A Modeling and Simulation of Optimized Interconnection between DC Microgrids with novel strategies of voltage, power and control”. Gracias. Mi WhatsApp +51970030394


En la figura del presente post se muestra la producción de energía eléctrica durante un período de 48 horas. La figura 2.3 a muestra los promedios de medición cada 1 segundo y partir de dichos valores se calcula los promedios de producción de energía cada 10 minutos, los cuales son mostrados en la figura 2.3 b. Los promedios cada 10 minutos son algo más suaves en comparación con los promedios cada 1 segundo.Esto indica que la mayoría de los variaciones ocurren en una escala de tiempo menor a 10 minutos. Algo que considero evidente, sin embargo, recibo muchas aún viejas ideas de incluso un tiempo mayor para realizar y considerar criterios de operación de turbinas eólicas. Esta es información importante a considerar en sus estudios de investigación y diseños, cualquier consulta o trabajo de modelamiento matemático y simulación numérica, me escriben…


Dictado en la Facultad de Ingeniería Eléctrica y Electrónica de la Universidad Nacional de Ingeniería (UNI) en Lima, Perú los días jueves 25 de Mayo (5 a 8 pm) y viernes 26 de Mayo (6 a 8 pm) del 2017.


El 17 Marzo 2017 sí una charla titulada “Taller de Redacción de Papers”. El evento fue organizado por los integrantes de la Sección Estudiantil de la Sociedad de Sistemas de Potencia de la IEEE en la Universidad Nacional de Ingeniería – IEEE PES UNI (Lima, Perú) y se desarrolló en la Sede de la Rama Estudiantil IEEE PES UNI en la Facultad de Ingeniería Eléctrica y Electrónica (FIEE) de la UNI. He tratado de resumir lo experimentado y visto en estas diapositivas, además de poder explicar en pizarra detalles de posibles temas en base a la actualidad energética. Éste tema es uno de aquellos que voy a ir progresivamente mejorándolo aportando nuevos elementos que sean útiles, prácticos y claros. Contacto: jmirez@uni.edu.pe

 


Durante el Simposio Internacional de Ciencias e Ingeniería Perú Verano 2017 realizado del 2 al 4 de febrero del 2017 en los ambientes de la Universidad Nacional Tecnológica de Lima Sur, ubicado en el distrito de Villa El Salvador, Lima, Perú; fui parte de la organización y también ponente con el tema de “Redes Eléctricas Inteligentes” para un público principalmente de estudiantes de pregrado de diferentes carreras de ingeniería y docentes universitarios. A continuación las diapositivas de mi presentación. Contacto: jmirez@uni.edu.pe

 


Jorge Mírez – Servicios en Ingeniería y Educación. WebSite: http://www.geocities.ws/jorgemirez WhatsAap: (+51) 970030394 Sede: Lima, Perú (disponibilidad de ir a provincias y exterior).


Jorge Mírez Tarrillo_Publicidad-1