Archive for the ‘Power Electronic’ Category


Proposals to the Operation, Tertiary Control and Optimization of DC Microgrids
Jorge Mírez, Luis Hernández Callejo, Manfred Horn, Gabriela Mendoza and Lilian J. Obregón.
Universidad Nacional de Ingeniería, Lima, Perú.
Universidad de Valladolid, Campus Duques de Soria, Soria, España.
jmirez@uni.edu.pe
Congreso Iberoamericano de Ciudades Inteligentes
(ICSC-CITIES 2018)
Realizado el 26 y 27 de septiembre de 2018 en el Auditorio del Campus Universitario Duques de Soria (Soria, España), con el patrocinio del Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo (CYTED), España.
Anuncios

Jorge Mírez – Servicios en Ingeniería y Educación. WebSite: http://www.geocities.ws/jorgemirez WhatsAap: (+51) 970030394 Sede: Lima, Perú (disponibilidad de ir a provincias y exterior).


Jorge Mírez Tarrillo_Publicidad-1

Transmisión en Vivo del Encuentro de Académicos y Profesionales Chota 2016. Hoy 28 Dic 2016. De 14 h (hora Perú) se da link YouTube


"Link de transmisión en vivo y en Directo en español del Encuentro de Académicos y Profesionales MAP Chota 2016 que se realiza hoy 28 Dic. a partir de las 14 h (hora de Perú) en el Complejo Cultural "Akunta" de la CIudad de Chota"....
Página Web: http://jmirez.wixsite.com/mapchota2016 
Fanpage: https://www.facebook.com/mapchota2016/
PD: Se invita a los que desean grabarlo, transmitirlo por radio, TV y/o cable el evento.
Link Youtube de transmisión en vivo: http://youtu.be/gJEeSJ4iNTA"
Link de transmisión en vivo y en Directo en español del Encuentro de Académicos y Profesionales MAP Chota 2016 que se realiza hoy 28 Dic. a partir de las 14 h (hora de Perú) en el Complejo Cultural “Akunta” de la CIudad de Chota”….
Página Web: http://jmirez.wixsite.com/mapchota2016
Fanpage: https://www.facebook.com/mapchota2016/
PD: Se invita a los que desean grabarlo, transmitirlo por radio, TV y/o cable el evento.

Link Transmisión en Vivo y en Directo en Español

http://youtu.be/gJEeSJ4iNTA

 

Meeting of Academics and Professionals / Encuentro de Académicos y Profesionales MAP Chota 2016. Miércoles 28 Dic 2016 (Wed, Dec 28, 2016). 14:00 h – 20:00 h. Lugar: Complejo Cultural “Akunta”. Chota, Perú.


afiche-poster-map-chota-0216 logo-horizontal-map-chota-2016 logo_2

Se invita a todos los que desean participar como Ponentes de este Encuentro. Las reglas son:

  1. Las ponencias serán de al menos 15 minutos.

  2. Hay espacio para 24 ponencias de 15 minutos.

  3. Las ponencias serán transmitidas vía internet por dos canales de YouTube (uno en español y otro en inglés con traductor en vivo).

  4. Los ponentes enviarán hasta el 21 de diciembre sus ponencias y CV para ser colocados en el Programa del evento.

  5. El modelo del CV en formato Word está disponible en el siguiente link: https://jmirez.files.wordpress.com/2016/12/map-chota-2016_nombreyapellidoponente_cv.docx

  6. El modelo de la presentación en formato PPT está disponible en: https://jmirez.files.wordpress.com/2016/12/ppt_mar-chota-2016_autor.pptx

  7. Los archivo PPT y Word enviarlo a jmirez@uni.edu.pe


Motivación del Encuentro

Las fiestas de fin de año reúnen a la familia y amigos, para lo cual se da el retorno de estudiantes, académicos y profesionales desde sus centros de estudio, investigación y de trabajo a sus ciudades de origen (en los diferentes ciudades y pueblos a nivel nacional)  a pasarla en familia, con las amistades o simplemente es un tiempo de retorno a nuestros lugares de origen.

Este es un motivo especial para reunirnos para conocernos y compartir lo realizado durante el año mediante la conversación y ponencias tanto en lo académico y en las experiencias profesionales sean éstas realizadas en el sector público como privado.

Chota, la Atenas del Norte del Perú, se viste de gala al organizar el MAP Chota 2016 e invita a ser parte de este encuentro entre estudiantes de escuelas, colegios, pregrado y postgrado, académicos, profesores, padres de familia, investigadores, profesionales, organizaciones de base y sociedad en general  de fin de año 2016 y hacemos el llamado a todas las ciudades del Perú a que se realicen eventos similares, y hacemos extensivo también a todos los pueblos y ciudades de América Latina.

Durante el MAP Chota 2016 estamos organizando algunas actividades extras: como un compartir; feria tecnológica, artesanal y artística; exposición de fotografías y de libros.

Las seis horas que durará el evento quedará guardado en YouTube y la participación en el evento como Ponente o Asistente es totalmente libre y gratuito. Quedan todos invitados a participar.

Página Web del Encuentro http://jmirez.wixsite.com/mapchota2016


pv-plant_solar-radiation-and-pv-solar-power-simulations

Dear audience. I am very happy in to write this post 1000 :)D . During many years, it has been a both exciting and hard work in read, understand, programming, modeling, simulations and analysis of results. The figure is a little photovoltaic power plant with its respective solar radiation. It has been implemented from mathematical models of thesys and books. The model is adaptable to PV plant of more power. Made in Matlab of MathWorks Inc.

Conferencia “Motivación en Ingeniería Mecánica Eléctrica, Biomédica y Espacial”. Ciclo de Charlas de Motivación – Lugar Polideportivo Colegio Nacional San Juan de Chota, Chota – Perú. Lunes 20 Junio 2016 – 9 am. Organiza: Promoción Bodas de Plata 1987-1991 “Horacio Zeballos Gamez” – CN San Juan de Chota (in spanish)


Conceptual diagram of a dc-bus microgrid system

The dc-bus microgrid link the diferent component of the microgrid both loads as sources. The figure is a general representation with conextion to AC-grid, wind turbine, PV solar plant, DC and AC loads, Batteries, fluwheel, micro turbine, AC/DC converser, DC/AC converser and DC/DC converser.

Source:
S. Vimalraj, P. Somasundaram, “Fault Detection, Isolation and Identification of Fault Location in Low-Voltage DC Ring Bus Microgrid System,” Int. J. Advanced Res. in Electrical, Electronics and Instr. Eng. vol. 3, special iss. 2, pp: 570-582, Apr. 2014


Variable-speed wind turbine with full-scale power converter

The second important concept that is popular for the newly developed and installed wind turbines is shown in Figure. It introduces a full-scale power converter to interconnect the power grid and stator windings of the generator, thus all the generated power from the wind turbine can be regulated. The asynchronous generator, wound rotor SG (WRSG) or permanent magnet SG (PMSG) have been reported as solutions to be used. The elimination of slip rings, simpler or even eliminated gearbox, full power and speed controllability as well as better grid support ability are the main advantages compared with the DFIG-based concept. The more stressed and expensive power electronic components as well as the higher power losses in the converter are, however, the main drawbacks for this concept.

Source:
Frede Blaabjerg and Ke Ma “Future on Power Electronics for Wind Turbine Systems” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 1, No. 3, September 2013


Variable-speed wind turbine with partial-scale power converter and a DFIG

This wind turbine concept is the most adopted solution nowadays and it has been used extensively since 2000s. As shown in Figure, a PEC is adopted in conjunction with the DFIG. The stator windings of DFIG are directly connected to the power grid, whereas the rotor windings are connected to the power grid by the converter with normally 30% capacity of the wind turbine. In this concept, the frequency and the current in the rotor can be flexibly regulated and thus the variable speed range can be extended to a satisfactory level. The smaller converter capacity makes this concept attractive seen from a cost point of view. Its main drawbacks are however, the use of slip rings and the challenging power controllability in the case of grid faults—these disadvantages may comprise the reliability and may be difficult to completely satisfy the future grid requirements

Source:
Frede Blaabjerg and Ke Ma “Future on Power Electronics for Wind Turbine Systems” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 1, No. 3, September 2013


Two HVDC transmission solutions_Classical LCC-based system with STATCOM and VSC-based system

Classical HVDC transmission systems [as shown in Figure (a)] are based on the current source converters with naturally commutated thyristors, which are the so-called linecommutated converters (LCCs). This name originates from the fact that the applied thyristors need an ac voltage source in order to commutate and thus only can transfer power between two active ac networks. They are, therefore, less useful in connection with the wind farms as the offshore ac grid needs to be powered up prior to a possible startup. A further disadvantage of LCC-based HVDC transmission systems is the lack of the possibility to provide an independent control of the active and reactive powers. Furthermore, they produce large amounts of harmonics, which make the use of large filters inevitable. Voltage-source converter (VSC)-based HVDC transmission systems are gaining more and more attention not only for the grid connection of large offshore wind farms. Figure (b) shows the schematic of a VSC-based HVDC transmission system

Source:
Juan Manuel Carrasco, Leopoldo García Franquelo, Jan T. Bialasiewicz, Eduardo Galván, Ramón C. Portillo Guisado, Ángeles Martín Prats, José Ignacio León and Narciso Moreno-Alfonso “Power-Electronic Systems for the Grid integration of Renewable Energy Sources: A Survey”. IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, August 2006


Double three-phase VSI

The figure shows the scheme of a full power converter for a wind turbine. The machine-side three-phase converter works as a driver controlling the torque generator, using a vector control strategy. The grid-side three-phase converter permits windenergy transfer into the grid and enables to control the amount of the active and reactive powers delivered to the grid. It also keeps the total-harmonic-distortion (THD) coefficient as low as possible, improving the quality of the energy injected into the public grid. The induction generator of wind turbine is connected to a voltage-source inverter (VSI) used as a rectifier

Source:
Juan Manuel Carrasco, Leopoldo García Franquelo, Jan T. Bialasiewicz, Eduardo Galván, Ramón C. Portillo Guisado, Ángeles Martín Prats, José Ignacio León and Narciso Moreno-Alfonso “Power-Electronic Systems for the Grid integration of Renewable Energy Sources: A Survey”. IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, August 2006


distribution demand between micosourses electrical network external and storage in a microgrid DC

Sun –> energy provided from photovoltaic energy plant.
Wind –> similar from wind turbine(s)
Batt –> similar from battery bank
ene –> similar injected from electrical network external or utility electric network

In other image in red is the total suministed for this sources and red line is the demand. Other images is cost, evoluction of energy supply from each source and more details. It is made for me (Jorge Mírez) in Matlabb/Simulink and I utilized concept of linear programming. Image is from my destokp laptop.


Typical step response of a micro-turbine

Transient changes in load power demand may result from faults in transmission line or load switching. For instance, a 75-kW Honeywell micro-turbine took about 35 s to respond for a 50%change in power demand under the grid-connected mode of operation.On the other hand, some fuel cells require about 10 s for a 15% change in power output.Furthermore, a fuel cell also has a recovery period of a few minutes to establish equilibrium before it can meet another step change in power output. The typical response that can be expected of a micro-turbine for a step change in load demand is illustrated in Figure. In the figure, PL denotes the load power demand, PS is the response of the micro-turbine, and (PL-PS) is the short age in power that needs to be supplied through some means. Inthe grid-connected mode of operation, the grid supplies the shortage in power until the micro-source responds to a step changein power demand. However, in the island mode of operation, this sudden demand can be met only if
additional storage is included in the MSDG system.

Source:
G. Venkataramanan, M.S. Illindala, C. Houle, and R.H. Lasseter. “Hardware Development of a  Laboratory-Scale Microgrid Phase 1—Single Inverter in Island Mode Operation”. NREL. November 2002 • NREL/SR-560-32527


CBEMA curves specifying acceptable voltage sensitivity levels

Inthe recent past, dramatic improvements in productivity have been realized in the high technology sector as well as in the traditional industries. For the electric power supply to these industries, this hasled to a concomitant increase in the number of loads that are sensitive to power quality. Some of the industries that have such large sensitive loads include semiconductor manufacturing, textile mills, paper millsand plastic injection molding.Of course, a number of smaller but equally critical loads such as computers and electronic data processing equipment are also sensitive to power quality.Thetolerance
levels of computer equipment are specified by the Information Technology Industry/Computer and Business Equipment Manufacturers’ Association (ITI/CBEMA) curves. Figure illustrates theCBEMA curves. This figure gives thepercent of nominal voltage versus duration in (60-Hz) cycles. The CBEMA curves represent the boundary of the ac input voltage envelope that can be tolerated (typically) by most
computer-based equipment. The upper curve represents the maximum voltage below which the equipment will continue to function normally. The lower curve is the minimum voltage above which the equipment will continue to function normally.

As seen in Figure, the steady state range of tolerance for computer equipmentis ±10% from the nominal voltage, i.e., the equipment continues to operate normally when sourced by any voltages in this range for an indefinite period of time. Similarly, voltages wells to a magnitude of 120% of the nominal value can be tolerated for about 0.5 s or 30 cycles; voltage sags to 80% of nominal for 10 s, or 600 cycles, can be tolerated. When the supply voltage is outside the boundaries of the susceptibility curves, improvement of the quality of power supplied to sensitive loads is essential to avoid a possible failure in their operation.

Source:
G. Venkataramanan, M.S. Illindala, C. Houle, and R.H. Lasseter. “Hardware Development of a  Laboratory-Scale Microgrid Phase 1—Single Inverter in Island Mode Operation”. NREL. November 2002 • NREL/SR-560-32527


Optimum DG Penetration for Minimum Interruption Frequency

One question that most system operators are concerned with is the optimised DG penetration level. Relationship regarding different cost models between optimum DG penetration level and interruption frequency is indicated in Figure.

Optimum micro-source penetration level is positive related with the interruption frequency without DG penetration; especially for average interruption costs, the relationship is almost linear. This relationship is important for systemplanning; as the system interruption frequency without DG penetration is generally known, the system operator is able to roughly determine of the optimum DG penetration level from reliability point of view


FACTS devices can enhance the power flow on existing power lines. For the transmission line shown in figure, the sending end voltage isVS∠δS, the receiving end voltage is VR∠δR and the equivalent impedance of parallel connected lines isX. The power transfer through the lines is given by:

FACTS equation

the figure also shows how FACTS devices act on the power transfer equation. The TCSC can change the impedance of the line, the STATCOM can control the voltage magnitude at

FACTS applications for increased power transfer

the terminal to which it is connected by injecting or absorbing reactive power and the UPFC can alter the phase angle of the sending end voltage, thus power flow through a line can be controlled in a number of ways.

Source:
SMART GRID
TECHNOLOGY AND APPLICATIONS
Janaka Ekanayake
Cardiff University, UK
Kithsiri Liyanage
University of Peradeniya, Sri Lanka
Jianzhong Wu
Cardiff University, UK
Akihiko Yokoyama
University of Tokyo, Japan
Nick Jenkins
Cardiff University, UK
A John Wiley & Sons, Ltd., Publication

 


Architecture of a DMSC

 

The figure shows the DMSC controller building blocks that assess operating conditions and find the control settings for devices connected to the network. The key functions of the DMSC are state estimation, bad data detection and the calculation of optimal control settings. The DMSC receives a limited number of real-time measurements at set intervals from the network nodes. The measurements are normally voltage, load injections and power flow measurements from the primary substation and other secondary substations. These measurements are used to calculate the network operating conditions. In addition to these real-time measurements, the DMSC uses load models to forecast load injections at each node on the network for a given period that coincides with the real-time measurements. The network topology and impedances are also supplied to the DMSC.
The state estimator uses this data to assess the network conditions in terms of node voltage magnitudes, line power flows and network injections. Bad measurements coming to the system will be filtered using bad data detection and identification methods.

Source:
SMART GRID
TECHNOLOGY AND APPLICATIONS
Janaka Ekanayake
Cardiff University, UK
Kithsiri Liyanage
University of Peradeniya, Sri Lanka
Jianzhong Wu
Cardiff University, UK
Akihiko Yokoyama
University of Tokyo, Japan
Nick Jenkins
Cardiff University, UK
A John Wiley & Sons, Ltd., Publication


Distribution network active management scheme

The Figure is a schematic of a simple distribution network with distributed generation (DG).There are many characteristics of this network that differ from a typical passive distribution network. First, the power flow is not unidirectional. The direction of power flows and the voltage magnitudes on the network depend on both the demand and the injected generation. Second, the distributed generators give rise to a wide range of fault currents and hence complex protection and coordination settings are required to protect the network. Third, the reactive power flow on the network can be independent of the active power flows. Fourth, many types of DGs are interfaced through power electronics and may inject harmonics into the network. The Figure also shows a control scheme suitable for achieving the functions of active control. In this scheme a Distribution Management System Controller (DMSC) assesses the network conditions and takes action to control the network voltages and flows. The DMSC obtains measurements from the network and sends signals to the devices under its control. Control actions may be a transformer tap operation, altering the DG output and injection/absorption
of reactive power.

Source:
SMART GRID
TECHNOLOGY AND APPLICATIONS
Janaka Ekanayake
Cardiff University, UK
Kithsiri Liyanage
University of Peradeniya, Sri Lanka
Jianzhong Wu
Cardiff University, UK
Akihiko Yokoyama
University of Tokyo, Japan
Nick Jenkins
Cardiff University, UK
A John Wiley & Sons, Ltd., Publication

 


cartucho condensador 1

Quienes hemos visto como funciona un banco de condensadores, podemos ver y escuchar el conectar y desconectar de los condensadores los cuales se van conectando dependiendo de la necesidad de potencia reactiva a inyectar y de las acciones del sistema de control. En la figura se muestra un ejemplo de funcionamiento de condensador para unos 100 estados o ciclos de trabajo, medida que he usado en esta figura, dado que la necesidad de potencia reactiva no depende de la escala de tiempo, es por lo general aleatoria, entonces lo que puedo ir determinando es si esta en conectado ON o desconectado OFF. Un sistema de ceros y unos sirven para identificar cada estado. La simulación está hecha en Matlab de MathWork Inc y complementa lo que post atrás es la ponencia que realice en Costa Rica durante el III Congreso Iberoamericano de Microredes con Generación Distribuida de Renovables. Favor difundir éste blog y si les interesa mis servicios, me escriben :)D


The information related to this post for sale for US $ 100.00. You can make payments through PayPal account: jorgemirez2002@gmail.com or send an e-mail to receive PayPal invoice and make your payment quickly and easily. Tell us (through e-mail) the name of the input or inputs that interests you. // La información relacionada con este post en venta por US $ 100.00. Usted puede hacer pagos a través de cuenta PayPal: jorgemirez2002@gmail.com o enviar un e-mail para recibir la factura de PayPal y hacer su pago de forma rápida y sencilla. Díganos (por medio de email) el nombre de la entrada o entradas que le interese.