Archive for the ‘Energy Renewable’ Category


“A mathematical model of SmartValley for estimation of contribution of biomass to the electrical generation”
Jorge Mírez ; Segundo Horna ; Daniel Carranza
2019 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). Ixtapa, Mexico, Mexico
Abstract:
A mathematical model is presented for the estimation of the contribution of biomass to the generation of electricity for a valley as a geographical scope of application. Is considered that a valley has several species that are cultivated during the year and that have by-products of the harvest that we have considered as biomass that can be used for the production of electricity that would benefit the valley’s inhabiting community. We have called this integration between population and crops SmartValley, which leads to the use of monitoring, control, management and planning among the different agricultural-energy actors.
Link: https://ieeexplore.ieee.org/document/9057045

Gratefully for this news !!

Regards:
Dr. Jorge Luis Mírez Tarrillo – PERU
Facebook http://www.facebook.com/jorgemirezperu 
Linkedin https://www.linkedin.com/in/jorge-luis-mirez-tarrillo-94918423/
E-mail: jmirez@uni.edu.pe


Burning harvested organic matter – biomass – provided most of mankind’s energy needs for millennia. Using such fuels remains the primary energy source for many people in developing and emerging economies, but such “traditional use” of biomass is often unsustainable, with inefficient combustion leading to harmful emissions with serious health implications.

Modern technologies can convert this organic matter to solid, liquid and gaseous forms that can more efficiently provide for energy needs and replace fossil fuels. A wide range of biomass feedstocks can be used as sources of bioenergy. These include: wet organic wastes, such as sewage sludge, animal wastes and organic liquid effluents, and the organic fraction of municipal solid waste (MSW); residues and co-products from agroindustries and the timber industry; crops grown for energy, including food crops such as corn, wheat, sugar and vegetable oils produced from palm, rapeseed and other raw materials; and nonfood crops such as perennial lignocellulosic plants (e.g. grasses such as miscanthus and trees such as short-rotation willow and eucalyptus) and oilbearing plants (such as jatropha and camelina).

Many processes are available to turn these feedstocks into a product that can be used for electricity, heat or transport. The figure illustrates a number of the main pathways available for these applications (IEA and FAO, 2017). The most common pathways to date have been: the production of heat and power from wood, agricultural residues and the biogenic fraction of wastes; maize and sugarcane to ethanol; and rapeseed, soybean and oil crops to biodiesel. Each of these bioenergy pathways consists of several steps, which include biomass production, collection or harvesting, processing to improve the physical characteristics of the fuel, pre-treatment to alter chemical properties, and finally conversion of the biomass to useful energy. The number of these steps may differ depending on the type, location and source of biomass, and the technology used to provide the relevant final energy use.

Source: International Energy Agency. “Technology Roadmap: Delivering Sustainable Bioenergy” http://www.iea.org


To provide an understanding of the current market landscape for bioenergy, an overview of market developments across the heat, electricity and transport sectors over the 2010-16 period is provided. This highlights key market trends since the production of the previous IEA technology roadmaps on bioenergy, and puts the longer-term scenarios in this roadmap into context.

Biomass and waste are already a significant global energy source, accounting for over 70% of all renewable energy production, and making a contribution to final energy consumption in 2015 that was roughly equivalent to that of coal. The largest end use of biomass and waste remains the traditional use of biomass, which is generally considered an unsustainable application of these resources. The focus of this publication is modern bioenergy solutions; the term bioenergy is generally used to refer to these and exclude the traditional use of biomass. Modern bioenergy consumption is largest in the heat sector, although bioenergy for electricity and transport biofuels is growing faster, mainly due to higher levels of policy support

Source: International Energy Agency. “Technology Roadmap: Delivering Sustainable Bioenergy” http://www.iea.org


Durante el Congreso BioBio Energía 2018 que se realizó en la Ciudad de Concepción, la Revista Energía me hizo una entrevista cuyas preguntas y respuestas se plasman en el link líneas abajo. Dicha entrevista fue del todo cordial, amena, técnica y entretenida; pues la temática y el entorno del evento permitían un clima adecuado de fluencia de opiniones e ideas. Les dejo con ésta lectura que espero sea de su interés.

Link de la entrevista: https://www.revistaenergia.com/19388/


Videoconferencia sobre Vehículos Eléctricos en la red y un resumen de tecnologías de generación distribuida en el marco de Energías Renovables. . Invitados a darle Me Gusta  a mi fanpage http://www.facebook.com/jorgemirezperu. Transmisión en vivo y en directo. Compartir 


Videoconferencia sobre tecnologías de generación distribuida (GD): celdas de combustibles, celdas solares fotovoltaicas (PV), turbinas eólicas y cogeneración. De acceso libre y gratuito. Compartirlo e invitados a darle Me Gusta  a mi fanpage http://www.facebook.com/jorgemirezperu por el cual se transmistirá en español, en vivo y en directo.

 


Hablemos sobre “Gestión Distribuida y algo de Energías Renovables”
Invitados a dar me gusta  a mi fanpage http://www.facebook.com/jorgemirezperu para siguientes charlas…
Compartir y bienvenido sean las preguntas


At the level of the distribution system, voltage control services focus on maintaining power system voltage within the prescribed bounds during normal operation and during – and especially following – disturbances by keeping the balance between generation and consumption of reactive power. Voltage control includes reactive power supply (injection or absorption), and it can be provided by dynamic sources (generators, synchronous compensators) and static sources (capacitor banks, static voltage controllers, and FACTS devices), including network equipment such as tap-changing transformers in the substations and loads. Voltage control has two targets: (a) Steady-state reactive power/voltage control, (b) Dynamic voltage stability.

Source: Antonio Moreno-Munoz. “Large Scale Grid Integration of Renewable Energy Sources”. The Institution of Engineering and Technology. 2017.

Dr. Jorge Mírez
e-mail: jmirez@uni.edu.pe
WebSite: http://www.geocities.ws/jorgemirez/
Facebook: http://www.facebook.com/jorgemirezperu (Please Like my Fanpage)
Linkedin: https://www.linkedin.com/in/jorge-luis-mirez-tarrillo-94918423/


A nivel del sistema de distribución, los servicios de control de voltaje se centran en mantener el voltaje del sistema de energía dentro de los límites prescritos durante la operación normal y durante, y especialmente después de las perturbaciones, manteniendo el equilibrio entre la generación y el consumo de energía reactiva (ver Figura). El control de voltaje incluye suministro de energía reactiva (inyección o absorción), y puede ser proporcionado por fuentes dinámicas (generadores, compensadores síncronos) y fuentes estáticas (bancos de condensadores, controladores de voltaje estático y dispositivos FACTS), incluidos equipos de red como transformadores con cambio de taps en subestaciones y cargas. El control de voltaje tiene dos objetivos: (a) Control de potencia reactiva / voltaje de estado estable, (b) Estabilidad dinámica del voltaje.

Fuente: Antonio Moreno-Munoz. “Large Scale Grid Integration of Renewable Energy Sources”. The Institution of Engineering and Technology. 2017.

Dr. Jorge Mírez
e-mail: jmirez@uni.edu.pe
WebSite: http://www.geocities.ws/jorgemirez/
Facebook: http://www.facebook.com/jorgemirezperu (Darle Me Gusta)
Linkedin: https://www.linkedin.com/in/jorge-luis-mirez-tarrillo-94918423/


To illustrate how this impacts the operation of the electricity grid, consider five different levels of available electricity production from RES, as shown in Figure. Note that there is not only a capacity of power towards the storage (charging the storage) but also a capacity of power from the storage to the grid (discharging the storage). It is part of the role of the system operator to decide which of the two should be chosen at any moment in time. Some thoughts are given below, based on the supply capacity in relation to the demand.

Supply level 1. The total supply capacity, directly from renewable sources plus by discharging the storage, is not enough to cover the power demand. The result is that not all the power demand can be fulfilled. All the available storage discharging capacity will be used to limit the amount of demand that is not fulfilled.

Supply level 2. The amount of supply capacity directly from renewables is not sufficient to cover the power demand, but by using part of the discharging capacity of the storage the power demand can be supplied. The remaining storage capacity can either be saved for later use or be used to cover some of the energy demand. This will be an optimization issue, where the state of charge of the storage, the expected future demand and the expected future production from renewables will have to be considered.

Supply level 3. The amount of supply capacity directly from renewables is sufficient to cover the total power demand. The remainder can be used to supply part of the energy demand and/or to charge the storage. When there is sufficient energy in the storage, the stored energy can even be used to supply the total energy demand. The optimisation of the charging/discharging of the storage versus supplying the energy demand is one of the tasks of the system operator.

Supply level 4. The amount of supply capacity directly from renewables exceeds the sum of power demand and energy demand. In that case the total power demand will be supplied and the remainder will be used to charge the storage.

Supply level 5. The amount of supply capacity directly from renewables exceeds to sum of power demand, energy demand, and charging capacity of the storage. In that case all demand should be fulfilled and the remaining amount of renewable energy will be curtailed.

Source: Antonio Moreno-Munoz. “Large Scale Grid Integration of Renewable Energy Sources”. The Institution of Engineering and Technology. 2017.

Dr. Jorge Mírez
e-mail: jmirez@uni.edu.pe
WebSite: http://www.geocities.ws/jorgemirez/
Facebook: http://www.facebook.com/jorgemirezperu (Please Like my Fanpage)
Linkedin: https://www.linkedin.com/in/jorge-luis-mirez-tarrillo-94918423/


Para ilustrar cómo esto afecta el funcionamiento de la red eléctrica, considere cinco niveles diferentes de producción de electricidad disponible de RES, como se muestra en la Figura. Tenga en cuenta que no solo existe una capacidad de alimentación hacia el almacenamiento (carga del almacenamiento) sino también una capacidad de alimentación desde el almacenamiento a la red (descarga del almacenamiento). Es parte de la función del operador del sistema decidir cuál de los dos debe elegirse en cualquier momento. Algunas ideas se dan a continuación, en función de la capacidad de oferta en relación con la demanda.

Nivel de suministro 1. La capacidad de suministro total, directamente de fuentes renovables más descargando el almacenamiento, no es suficiente para cubrir la demanda de energía. El resultado es que no se puede satisfacer toda la demanda de energía. Toda la capacidad de descarga de almacenamiento disponible se utilizará para limitar la cantidad de demanda que no se cumple.

Nivel de suministro 2. La cantidad de capacidad de suministro directamente de las energías renovables no es suficiente para cubrir la demanda de energía, pero al usar parte de la capacidad de descarga del almacenamiento, se puede suministrar la demanda de energía. La capacidad de almacenamiento restante puede guardarse para su uso posterior o utilizarse para cubrir parte de la demanda de energía. Este será un problema de optimización, donde se tendrá que considerar el estado de carga del almacenamiento, la demanda futura esperada y la producción futura esperada de las energías renovables.

Nivel de suministro 3. La cantidad de capacidad de suministro directamente de las energías renovables es suficiente para cubrir la demanda total de energía. El resto se puede usar para abastecer parte de la demanda de energía y / o cargar el almacenamiento. Cuando hay suficiente energía en el almacenamiento, la energía almacenada puede incluso usarse para abastecer la demanda total de energía. La optimización de la carga / descarga del almacenamiento frente al suministro de la demanda de energía es una de las tareas del operador del sistema.

Nivel de suministro 4. La cantidad de capacidad de suministro directamente de las energías renovables excede la suma de la demanda de energía y la demanda de energía. En ese caso, se suministrará la demanda total de energía y el resto se usará para cargar el almacenamiento.

Nivel de suministro 5. La cantidad de capacidad de suministro directamente de las energías renovables excede a la suma de la demanda de energía, la demanda de energía y la capacidad de carga del almacenamiento. En ese caso, se debe satisfacer toda la demanda y se reducirá la cantidad restante de energía renovable.

Fuente: Antonio Moreno-Munoz. “Large Scale Grid Integration of Renewable Energy Sources”. The Institution of Engineering and Technology. 2017.

Dr. Jorge Mírez
e-mail: jmirez@uni.edu.pe
WebSite: http://www.geocities.ws/jorgemirez/
Facebook: http://www.facebook.com/jorgemirezperu (Darle Me Gusta)
Linkedin: https://www.linkedin.com/in/jorge-luis-mirez-tarrillo-94918423/


El Laboratorio Nacional de Energías Renovables de los Estados Unidos de América (NREL) nos muestra una gráfica de evolución del desarrollo de las mejores eficiencias de celdas solares fotovoltaicas logradas hasta mediados del presente año 2019. Ahí se muestran las diferentes tecnologías y las empresas, laboratorios, universidades, etc. que lo han hecho posible lograr tales eficiencias. Algunas de las mismas pueda que sea a nivel experimental o de laboratorio, resulten caras, pero lo bueno es que ya se han fabricado; de acá en adelante es asunto de mejorar la tecnología, simplificarla y hacerla más asequible.

 


IEEE Conference on Mechatronics, Electronics and Automotive Engineering – ICMEAE 2019. Cuernavaca, México. Nov 26 – 29, 2019.
https://www.facebook.com/icmeae/
http://www.icmeae.org.mx


“Microgrid of DC/AC voltage powered by solar, wind, batteries and conventional sources”. Jorge Mírez. Perfiles. Edition Nº 10 – [January – December 2013]. Available in: http://ceaa.espoch.edu.ec:8080/revista.perfiles/Articuloshtml/Perfiles10Art5/Perfiles10Art5.xhtml


“Energy Management of Distributed Resources in Microgrids”. J. L. Mírez, H.R. Chamorro, C.A. Ordonez, R. Moreno. 2014 IEEE 5th Colombian Workshop on Circuits and Systems (CWCAS).
DOI: 10.1109/CWCAS.2014.6994607


“Simulation of DC Microgrid and Study of Power and Battery Charge/Discharge Management”. Jorge Mírez, Luis Hernández-Callejo, Manfred Horn, Luis Miguel Bonilla. DYNA Ingeniería e Industrial. November 2017 – Volume: 92 – Pages: 673-679.
DOI: http://dx.doi.org/10.6036/8475


“A modeling and simulation of optimized interconnection between DC microgrids with novel strategies of voltage, power and control”. Jorge Mírez. 2017 IEEE Second International Conference on DC Microgrids (ICDCM). DOI: 10.1109/ICDCM.2017.8001098


“Technical-Economic Analysis of a AC/DC Microgrid for Public Health Institutions with Low Electrical Demand. Case Study: Perú”. Jorge Luis Mírez Tarrillo. Perfiles. Number 16. Vol. 2 (2016). ISSN 1390-5740.
http://ceaa.espoch.edu.ec:8080/revista.perfiles/Articuloshtml/Perfiles16Art7/Perfiles16Art7.xhtml


“Dissolved Ion Movement and Regulation of pH in a Watery Substance under a Constant Magnetic Field”. Jorge L. Mírez Tarrillo, José Joaquín Tristá Moncada. Tecnología Química. Special Edition – 2001. ISSN 0041-8420. Cuba. https://revistas.uo.edu.cu/index.php/tq/index 


Invitación a sintorizar videotransmisión día jueves 22 de agosto desde las 7 pm (19:00 h – hora de Perú) hasta las 11 pm (23:00 h – hora de Perú) [04 horas] sobre repaso de libro sobre turbinas de viento, en que explicaré ecuaciones, partes y componentes de turbinas, sus fundamentos, haré también de paso códigos de Matlab/Simulink de las ecuaciones que vayamos describiendo y responderé preguntas de la cyber-audiencia en Perú y otros países. En español y será únicamente a través de mi fanpage http://www.facebook.com/jorgemirezperu al que deben darle Me Gusta (Y). Orientado a estudiantes de ingeniería, ingenieros, jóvenes, empresarios y toda persona que esté interesado en las energías renovables y en especial en la energía eólica. Pasar la voz – Compatir !!
Temario: (a) El energía eólica y sus orígenes (b) Recursos eólicos y sus características, (c) Aerodinámica de las turbinas eólicas, (d) Aspectos eléctricos de las turbinas eólicas (e) Componentes y materiales de una turbina eólica.
[Opcional] Certificado PDF emitido por PERU Green Smart Energy SAC por 04 horas de capacitación y firmado por mi persona – Costo por persona = S/. 50.00 (US$ 15.00) se emite factura electrónica. Contacto: jmirez@uni.edu.pe