Archive for the ‘Viento’ Category


El presente post muestra una data de velocidad de viento tomados en tiempos más cortos de lo usual que se llama como “en tiempo real” que es mediciones cada “15 minutos”, lo cual, es un tiempo extramadamente largo para las tecnologías que ahora se tienen dispuestas para la generación de electricidad como son entre ellas las turbinas eólicas. Basta pensar lo variable de dichos datos para inducir los esfuerzos y fuerzas que se presentan no sólo sobre los diferentes álabes sino también en la torre de soporte. Con ello, las aproximaciones horarias es claro que tienen un punto bastante general y dejan en claro de que tipo de profesional está tomando dicho contexto. Se requiere ahora que se trabaje en medidas cortas de tiempo que ayuden a desarrollar tecnologías para los diferentes problemas que se presentan en las turbinas cada vez más grandes. Y además, ver algunos problemas colaterales como el choque de aves en las turbinas y el ruido que ellas generan – pero se anima a dejar la mediocridad y estar bajo argumentos seudo científicos (cosa que está muy de moda al menos en mi país Perú que a cualquier charlatán le creen) – para crear y desarrollar las tecnologías que minimizen o anulen esos efectos y entonces podamos tener centrales eólicas cada vez más amigables con el medio ambiente.
Atte: Jorge Mírez
Sigueme en mis redes sociales (Facebook, Twitter, Google+ y otros) y blogs al que puedes acceder desde mi website http://www.geocities.ws/jorgemirez, es especial, dale “Me Gusta” a mi Fanpage http://www.facebook.com/jorgemirezperu

Anuncios

Diapositivas de mi conferencia “Taller de Redacción y Elaboración de Papers” dictado en Pontificia Universidad Católica del Perú -PUCP en Lima, Perú; el miércoles 13 setiembre 2017 en el Facultad de Ciencias e Ingeniería, organizado por AIESEM. Van los JPG de las diapositivas.

El video lo pueden visualizar en mi fanpage http://www.facebook.com/jorgemirezperu o también a continuación:

 

 


Todo depende del problema que se desea resolver. Si tiene que ver con la capacidad que se puede generar para un sistema eléctrico, obviamente que cuenta la producción horaria si éste se realiza bajo el marco de tarifas fijas cada cierto extenso tiempo por ejemplo cada tres meses o meses. Sin embargo, si se tiene un mercado en que las tarifas cambia en períodos de tiempo menores a una hora, la toma de datos de velocidad de viento se tiene que hacer en menor tiempo para hacer seguimiento de la producción y predicción de la misma. Hay ya mercados que fijan precios cada 15 minutos.

Ahora si el tema de estudio son cuestiones de diseño y control de los mismos aerogeneradores, así como asegurar su fiabilidad mediante el monitoreo de su condicion de funcionamiento y esfuerzos al que está sometido, ya la toma de datos se hace en mucho menor tiempo, quizás fracciones de segundo en algunos casos en que se desea analizar determinados fenómenos físicos escenciales en los procesos transitorios, deformaciones, fatiga mecánica, etc. En resumen, pensar en analizar producción de energia eléctrico con datos de viento cada hora, pues bueno, eso todo el mundo lo hace, lo ha hecho y lo hará, es más ya hay software especializado para esto, por lo tanto, no es valor añadido a cualquier investigación excepto se haga en algún lugar remoto o con poca información que permita estudiar este tema. Los procesos de corto tiempo son más interesantes y estos pueden ser afrontamos desde lecturas cada mucho menor tiempo o desde la de gran período de tiempo… todo depende del arte de usar las matemáticas para con estos datos y de la programación en simulación.


En la figura del presente post se muestra la producción de energía eléctrica durante un período de 48 horas. La figura 2.3 a muestra los promedios de medición cada 1 segundo y partir de dichos valores se calcula los promedios de producción de energía cada 10 minutos, los cuales son mostrados en la figura 2.3 b. Los promedios cada 10 minutos son algo más suaves en comparación con los promedios cada 1 segundo.Esto indica que la mayoría de los variaciones ocurren en una escala de tiempo menor a 10 minutos. Algo que considero evidente, sin embargo, recibo muchas aún viejas ideas de incluso un tiempo mayor para realizar y considerar criterios de operación de turbinas eólicas. Esta es información importante a considerar en sus estudios de investigación y diseños, cualquier consulta o trabajo de modelamiento matemático y simulación numérica, me escriben…

Meeting of Academics and Professionals / Encuentro de Académicos y Profesionales MAP Chota 2016. Miércoles 28 Dic 2016 (Wed, Dec 28, 2016). 14:00 h – 20:00 h. Lugar: Complejo Cultural “Akunta”. Chota, Perú.


afiche-poster-map-chota-0216 logo-horizontal-map-chota-2016 logo_2

Se invita a todos los que desean participar como Ponentes de este Encuentro. Las reglas son:

  1. Las ponencias serán de al menos 15 minutos.

  2. Hay espacio para 24 ponencias de 15 minutos.

  3. Las ponencias serán transmitidas vía internet por dos canales de YouTube (uno en español y otro en inglés con traductor en vivo).

  4. Los ponentes enviarán hasta el 21 de diciembre sus ponencias y CV para ser colocados en el Programa del evento.

  5. El modelo del CV en formato Word está disponible en el siguiente link: https://jmirez.files.wordpress.com/2016/12/map-chota-2016_nombreyapellidoponente_cv.docx

  6. El modelo de la presentación en formato PPT está disponible en: https://jmirez.files.wordpress.com/2016/12/ppt_mar-chota-2016_autor.pptx

  7. Los archivo PPT y Word enviarlo a jmirez@uni.edu.pe


Motivación del Encuentro

Las fiestas de fin de año reúnen a la familia y amigos, para lo cual se da el retorno de estudiantes, académicos y profesionales desde sus centros de estudio, investigación y de trabajo a sus ciudades de origen (en los diferentes ciudades y pueblos a nivel nacional)  a pasarla en familia, con las amistades o simplemente es un tiempo de retorno a nuestros lugares de origen.

Este es un motivo especial para reunirnos para conocernos y compartir lo realizado durante el año mediante la conversación y ponencias tanto en lo académico y en las experiencias profesionales sean éstas realizadas en el sector público como privado.

Chota, la Atenas del Norte del Perú, se viste de gala al organizar el MAP Chota 2016 e invita a ser parte de este encuentro entre estudiantes de escuelas, colegios, pregrado y postgrado, académicos, profesores, padres de familia, investigadores, profesionales, organizaciones de base y sociedad en general  de fin de año 2016 y hacemos el llamado a todas las ciudades del Perú a que se realicen eventos similares, y hacemos extensivo también a todos los pueblos y ciudades de América Latina.

Durante el MAP Chota 2016 estamos organizando algunas actividades extras: como un compartir; feria tecnológica, artesanal y artística; exposición de fotografías y de libros.

Las seis horas que durará el evento quedará guardado en YouTube y la participación en el evento como Ponente o Asistente es totalmente libre y gratuito. Quedan todos invitados a participar.

Página Web del Encuentro http://jmirez.wixsite.com/mapchota2016


costo-referencial-de-la-energia-eolica-terrestre-y-la-escala-de-utilidad-pv

El viento y la energía solar fotovoltaica son actualmente las fuentes de electricidad de más rápido crecimiento a nivel mundial. En 2015, su generación adicional anual alcanzó más del 90% de la demanda incremental de electricidad. Entre 2008 y 2015, el coste medio del viento terrestre disminuyó en un 35% y el del PV solar en casi un 80% (ver Figura). La madurez tecnológica y los costes más bajos hacen que la energía eólica y solar sea una opción cada vez más atractiva para los responsables políticos que buscan cumplir los objetivos de la política energética, como mejorar la seguridad energética mediante la diversificación de la oferta, la reducción de la contaminación local y la reducción de las emisiones de CO2. Se espera que la energía eólica y solar contribuyan de manera decisiva a cumplir las ambiciones del Acuerdo de París. Su contribución a los sistemas de energía en todo el mundo está pasando rápidamente de marginal a general, incluso en los países emergentes y en desarrollo.

Fuente: International Energy Agency. “Next Generation Wind and Solar Power: From cost to value”. IEA Publications http://www.iea.org/. Paris October 2016.


morebooks-jorge-mirez-libro-introduccion-modelamiento-simulacion-de-microredes-de-energia portada_primer_libro

Enlace del libro (información, precio, compra): https://www.morebooks.de/store/es/book/introducci%C3%B3n-al-modelamiento-y-simulaci%C3%B3n-de-microredes-de-energ%C3%ADa/isbn/978-3-639-63529-4

Introducción al Modelamiento y Simulación de Microredes de Energía
Un acercamiento a los sistemas eléctricos del futuro mediante la ingeniería, física, matemática y programación
Editorial Académica Española (2016-10-25 )

ISBN-13:978-3-639-63529-4
ISBN-10:3639635299
EAN:9783639635294

Idioma del libro:
Notas y citas / Texto breve:

En el libro desarrollo el modelamiento y simulación de una microred (microgrid) de voltaje continuo/alterno alimentado con fuentes solar fotovoltaica, eólica, de almacenamiento, una red eléctrica convencional (red de empresa pública o privada de electricidad) y que posee además cargas eléctricas. En dicha microgrid se realiza la evaluación del comportamiento de los parámetros del sistema: voltaje, corriente, potencia y energía eléctrica, en condiciones normales de funcionamiento. Matlab/Simulink de MathWork Inc. es la herramienta de simulación usada y los códigos son dados en Anexos. El libro está pensando para un amplio círculo de lectores, entre: (a) estudiantes de pregrado y postgrado de diferentes carreras relacionadas a la temática de microgrids, energias renovables y energia en general, como son de ingeniería mecanica, eléctrica, electrónica y electromecanico; física, matemática, computacion, economía, entre otras; (b) empresarios y profesionales que desean especializarse o ampliar sus conocimientos en energías renovables y/o modelamiento matemático y simulación numérica; (c) autoridades y público en general interesados en temas de energía.
Editorial: Editorial Académica Española
Sitio web: https://www.eae-publishing.com
Por (autor): Jorge Luis Mírez Tarrillo
Número de páginas: 240
Publicado en: 2016-10-25
Categoría: Tecnología
Palabras clave: Energías renovables, Microred, Modelamiento y Simulación, sistema eléctrico, Matlab Simulink

(Dénle Me gusta en mi Fanpage personal: http://www.facebook.com/jorgemirez )


wind_turbine_cpoutput-power-and-attack-angle

Hello dear audience of this my blog about energy renewables. The figure is a previous post and shows three fundamental curves in performance of wind turbine: power coeficient, output power and attack angle vs wind speed. It is all posible states by a wind turbine. In this power level, all wind turbine in massive production are horizontal axis. Graphics are placed in horizontal form for easy visualization. I want will that it be useful. Development on Matlab/Simulink of MathWorks Inc both ideal turbine, power coeficient and  optimization process in attack angle.

Conferencia “Motivación en Ingeniería Mecánica Eléctrica, Biomédica y Espacial”. Ciclo de Charlas de Motivación – Lugar Polideportivo Colegio Nacional San Juan de Chota, Chota – Perú. Lunes 20 Junio 2016 – 9 am. Organiza: Promoción Bodas de Plata 1987-1991 “Horacio Zeballos Gamez” – CN San Juan de Chota (in spanish)


Control of active and reactive power in a wind turbine with multipole PMSG

Another example for the control structure used for full-scale converter-based wind turbine concept is shown in Figure. An advantage of this turbine system is that the dc link performs some kinds of control decoupling between the turbine and the grid. The dc link will also give an option for the wind turbines to be connected with energy storage units, which can better manage the active power flow into the grid system—this feature will further improve the grid supporting abilities of the wind turbines. The generated active power of the WTS is controlled by the generator side converter, whereas the reactive power is controlled by the grid side converter. It is noted that a dc chopper is normally introduced to prevent overvoltage of dc link in case of grid faults, when the extra turbine power needs to be dissipated as the sudden drop of grid voltage

Source:
Frede Blaabjerg and Ke Ma “Future on Power Electronics for Wind Turbine Systems” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 1, No. 3, September 2013


Control of a wind turbine with DFIG

The control methods for a DFIG-based WTS are shown in Figure. Below maximum power production, the wind turbine will typically vary the rotational speed proportional with the wind speed and keep the pitch angleθ fixed. At very low wind speed, the rotational speed will be fixed at the maximum allowable slip to prevent over voltage of generator output. A pitch angle controller is used to limit the power when the turbine output is above the nominal power. The total electrical power of the WTS is regulated by controlling the DFIG through the rotor side converter. The control strategy of the grid side converter is simply just to keep the dc-link voltage fixed. It is noted that a trend is to use a crowbar connected to the rotor of DFIG to improve the control performance under grid faults.

Source:
Frede Blaabjerg and Ke Ma “Future on Power Electronics for Wind Turbine Systems” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 1, No. 3, September 2013


Variable-speed wind turbine with full-scale power converter

The second important concept that is popular for the newly developed and installed wind turbines is shown in Figure. It introduces a full-scale power converter to interconnect the power grid and stator windings of the generator, thus all the generated power from the wind turbine can be regulated. The asynchronous generator, wound rotor SG (WRSG) or permanent magnet SG (PMSG) have been reported as solutions to be used. The elimination of slip rings, simpler or even eliminated gearbox, full power and speed controllability as well as better grid support ability are the main advantages compared with the DFIG-based concept. The more stressed and expensive power electronic components as well as the higher power losses in the converter are, however, the main drawbacks for this concept.

Source:
Frede Blaabjerg and Ke Ma “Future on Power Electronics for Wind Turbine Systems” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 1, No. 3, September 2013


Variable-speed wind turbine with partial-scale power converter and a DFIG

This wind turbine concept is the most adopted solution nowadays and it has been used extensively since 2000s. As shown in Figure, a PEC is adopted in conjunction with the DFIG. The stator windings of DFIG are directly connected to the power grid, whereas the rotor windings are connected to the power grid by the converter with normally 30% capacity of the wind turbine. In this concept, the frequency and the current in the rotor can be flexibly regulated and thus the variable speed range can be extended to a satisfactory level. The smaller converter capacity makes this concept attractive seen from a cost point of view. Its main drawbacks are however, the use of slip rings and the challenging power controllability in the case of grid faults—these disadvantages may comprise the reliability and may be difficult to completely satisfy the future grid requirements

Source:
Frede Blaabjerg and Ke Ma “Future on Power Electronics for Wind Turbine Systems” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 1, No. 3, September 2013


Evolution of wind turbine size and the power electronics seen from 1980 to 2018

The size of individual wind turbine is also increasing dramatically to obtain a reduced price per generated kilowatt hour. In 2012, the average turbine size delivered to the market was 1.8 MW, among which the average offshore turbine has achieved a size of 4-MW. The growing trends of emerging turbine size between 1980 and 2018 are shown in Figure, where the development of power electronics in the WTS (rating coverage and function role) is also shown. It is noted that the cutting-edge 8-MW wind turbines with a diameter of 164 m have already shown up in 2012. Right now most of the turbine manufacturers are developing products in the power range 4.5–8 MW, and it is expected that more and more large wind turbines with multimegawatt power level, (even up to 10-MW will appear in 2018), will be present in the next decade—driven mainly by the considerations to lower down the cost of energy.

Source:
Frede Blaabjerg and Ke Ma “Future on Power Electronics for Wind Turbine Systems” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 1, No. 3, September 2013


Distribution of wind turbine market share by the manufacturers in 2012

Regarding the markets and manufacturers, the U.S. became the largest markets with over 13.1 GW capacity installed in 2012, together with China (13 GW) and the EU (11.9 GW) sharing around 87% of the global market. The Danish company Vestas first gives out the top position among the largest manufacturers since 2000, while GE catches up to the first because of the strong U.S. market in 2012. Figure summarizes the worldwide top suppliers of wind turbines in 2012. It is seen that there are four Chinese companies in the top 10 manufacturers with a total market share of 16.6%, which is a significant drop compared with the 26% in 2011.

Source:
Frede Blaabjerg and Ke Ma “Future on Power Electronics for Wind Turbine Systems” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 1, No. 3, September 2013


Global cumulative installed wind power capacity from 1999 to 2020

The cumulative wind power capacity from 1999 to 2020 is shown in Figure, and it can be seen that the wind power has grown fast to a capacity of 283 GW with ∼45 GW installed only in 2012, and this number is expected to achieve 760 GW in 2020 on moderate scenario [9]. The wind power grows more significant than any other renewable energy sources and is becoming really an important player in the modern energy supply system. As an extreme example Denmark has a high penetration by wind power and today > 30% of the electric power consumption is covered by wind. This country has even the ambition to achieve 100% nonfossil-based power generation system by 2050.

Source:
Frede Blaabjerg and Ke Ma “Future on Power Electronics for Wind Turbine Systems” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 1, No. 3, September 2013


Typical compensation system for renewable energy applications based on flywheel energy storage

There are two broad classes of flywheel-energy-storage technologies. One is a technology based on low-speed flywheels (up to 6000 r/min) with steel rotors and conventional bearings. The other one involves modern high-speed flywheel systems (up to 60 000 r/min) that are just becoming commercial and make use of advanced composite wheels that have much higher energy and power density than steel wheels. This technology requires ultralow friction bearing assemblies, such as magnetic bearings, and stimulates a research trend. Most applications of flywheels in the area of renewable energy delivery are based on a typical configuration where an electrical machine (i.e., high-speed synchronous machine or induction machine) drives a flywheel, and its electrical part is connected to the grid via a back-to-back converter, as shown in Figure. Such configuration requires an adequate control strategy to improve power smoothing. The basic operation could be summarized as follows. When there is excess in the generated power with respect to the demanded power, the difference is stored in the flywheel that is driven by the electrical machine operating as a motor. On the other hand, when a perturbation or a fluctuation in delivered power is detected in the loads, the electrical machine is driven by the flywheel and operates as a generator supplying needed extra energy. A typical control algorithm is a direct vector control with rotor-flux orientation and sensorless control using a model-reference-adaptive-system (MRAS) observer.

Source:
Juan Manuel Carrasco, Leopoldo García Franquelo, Jan T. Bialasiewicz, Eduardo Galván, Ramón C. Portillo Guisado, Ángeles Martín Prats, José Ignacio León and Narciso Moreno-Alfonso “Power-Electronic Systems for the Grid integration of Renewable Energy Sources: A Survey”. IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, August 2006


Two HVDC transmission solutions_Classical LCC-based system with STATCOM and VSC-based system

Classical HVDC transmission systems [as shown in Figure (a)] are based on the current source converters with naturally commutated thyristors, which are the so-called linecommutated converters (LCCs). This name originates from the fact that the applied thyristors need an ac voltage source in order to commutate and thus only can transfer power between two active ac networks. They are, therefore, less useful in connection with the wind farms as the offshore ac grid needs to be powered up prior to a possible startup. A further disadvantage of LCC-based HVDC transmission systems is the lack of the possibility to provide an independent control of the active and reactive powers. Furthermore, they produce large amounts of harmonics, which make the use of large filters inevitable. Voltage-source converter (VSC)-based HVDC transmission systems are gaining more and more attention not only for the grid connection of large offshore wind farms. Figure (b) shows the schematic of a VSC-based HVDC transmission system

Source:
Juan Manuel Carrasco, Leopoldo García Franquelo, Jan T. Bialasiewicz, Eduardo Galván, Ramón C. Portillo Guisado, Ángeles Martín Prats, José Ignacio León and Narciso Moreno-Alfonso “Power-Electronic Systems for the Grid integration of Renewable Energy Sources: A Survey”. IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, August 2006